LandBearShark 2 is finished, but it isn’t snowing anymore.

Well, I can’t say that I didn’t already finish LBS2 like 2 weeks ago. I did, in fact, and it’s been around the block a few times already. But sadly, since then, there’s been no snow in the weather forecast. Meaningful amounts, anyway – a few flurries fell here and there last week, but what good is that? Do I really need to take this thing to New Hampshire!?

I was counting on some snowfall to let me combine a little testing video with the rest of the build, but given that seems unlikely to happen, here’s the build in its entirety.

The first step in rebuilding is to retire the old design. Here is LBS pulled out of under-table storage. A little dusty, but it still looks kind of glorious.

The big ATV style crashbar is not returning in the new design, because really, it was just too over the top. It was funny and contributed to the very unique look of the thing, but it also weighed about 10 pounds (made of surplus 1/8″ wall steel tubing…) and the mounting design was very much optimized for the old frame and I couldn’t quite make the design work with the new aluminum one.

Otherwise, electronics aside, many component parts of LBS are being reused. I don’t think I’m quite at the level of the Ship of Theseus yet…

LBS has been reduced to components. I took the opportunity to perform a mass cleaning of all the track parts because they had been subject to substantial dirt and grime buildup. The chains, especially, took a distressing amount of soaking in brake and carb cleaner and like an entire roll of shop towels. Chains are terrible things.

Its former frame was used as a collection bin for most of my other retired aluminum-bodied projects. I was intending on pitching it in a shop’s aluminum recycling dumpster, but ended up putting it up on Reuse (the free stuff mailing list) for people’s amusement. I figured that had I been a happy froshy bunny during this time, I would be so extremely excited, jumpy, and otherwise bunny-like if somebody posted a pile of waterjet-cut aluminum parts to Reuse that I might start building project of my own spurred by the simple fact of possessing these items. That was the plan, anyway. Paying it forward for the next happy bunny that bounces into MITERS.

(Some of it was used immediately in a productive fashion).

One of the first build exercises was spacer and standoff-making. Most of these short ones shown are parts that will go into the motor mount, suspension, and new bogies.

I’ve been gradually liberalizing from my usual hardline t-nutting policies in favor of using material more effectively when the design calls for it. In fact, LBS was one of my last major giant t-nutted plate assemblies (the other being Make-a-Bot). I actually can’t think of anything I built from scratch in 2011 and 2012 which made gratuitous use of plates where they weren’t effective.

I’m thinking it’s about time to update the How to Build your Robot Really Really Fast document I wrote some time in 2010 to be a more thorough treatment of various design for assembly manufacturing methods, rather than a cursory overview of standoffs and t-nuts.

With a few of the necessary spacers done, I turned my attention to assembling my Fake Andymark Gearboxen. I’m a fan of their very inexpensive (compared to industrial suppliers, anyway) hubless spur gears because for most robotics-related purposes, hubbed spur gears add unnecessary bulk and weight if you are just making cluster gears anyway, or using another method of power transmission like splines or direct coupling to the driven member. In fact I’m such a fan that I’ll plug them some more: SPUR GEARS!

(Some mixing and matching may be involved.)

The way my intermediate gear shaft goes together is simple. Take a hex shaft chunk, stuff a bushing into it (drilled and bored on tinylathe), then start piling hex-bore spacers and hex-bore gears onto it. A hex bore custom sprocket is in the middle somewhere. On each end is a bronze thrust washer to keep everything in check axially.

The whole assembly was purposefully made a few thousandths of an inch shorter than the length of the center standoff – involving shaving a bit of material from one of the hex bore spacers – that it could spin freely once lubed up a little, and kept itself in place. Bam, fast-build gearbox without machining complex shafts and retaining features.

I’ll also admit I am a slow convert to the hazardous, addictive, and self-destructive world of hexagonal shafts. They’re just so easy.

The two Fake Andymark Gearboxen completed. These have no mounting bolt pattern – they are hung from the center Big Shaft of the vehicle, and kept from moving by chain tension on one side and the chain tensioner on the other, upon which they brace against.

Onto frame assembly. Did I say I wasn’t going to make T-nutted things any more?

Nah, no way. I’ve not become that unprincipled. There are still a few holding the frame together, but they are no longer the majority contributor to frame rigidity. In this case, it’s pretty much just for making the right angle joint that will be backed up by long threaded rod-and-spacer preloaded columns (see Carly Rae Jepsen’s build style), which can add much more rigidity than an equivalent floppy plate span.

The bogie frames this time are much lighter in section, and maybe a little too flowy looking. The reason is that these never took subtantial structural loads anyway – recall that even in LBS version 1, they were hinged in the center at the Big Shaft. The load path goes from the rider weight into the Big Shaft, where it is met by reaction force coming from the ground, going through the track sprockets and into the track axles. But that load is expressed primarily in torsion (out of plane twisting) of the bogie frame sides, because the suspension is so damn stiff that it’s basically a truss member. LBS has always ‘sagged’ a little as a result of this torsion (think overloaded car), so there was no reason to keep using the huge heavy side plates.

The much lighter cross section of the new bogies saves about 3 pounds and cuts the design down to basically the bare amount needed to connect the dots in terms of mounting points.

Now it’s starting to look like some kind of cracked out Mars rover, or a kinetic sculpture. Everything gets slid onto the Big Shaft at once, secured by shaft collars. I switched to a 3/4″ diameter axle this time – LBS1 had a 20mm one, which is a dimension I have no clue why I picked initially, but 20mm shaft collars are espensive and I needed a few more of them anyway. 3/4″ was the closest size to 20mm that still allowed me some space to clear the CIM motors, and wouldn’t be bendy under rider weight.

After a brief game of Which One-off Spacer Is This?! I began to put the track wheels back on, and also slipped the motors onto the Big Shaft.

Without the outside bogie frames keeping the axles on center, slipping on the track itself was easy – the whole assembly just kind of bent in enough. I did have to spreader-clamp the axles to make all the screws go in, though. Overall, the track tension has increased over version 1, since it was known to be somewhat loose.

After the track pods were slipped back on, the project reached criticality. At this point, with the chains not hooked up yet, I was supermanning it and coasting down the hall – not very far, of course.

Moving onto electronics, I’ve punched together the electronics box and mounted the switch and cooling fan. Little rubber grommets have been installed in the bottom where the motor wires will enter. I also drilled, tapped the eventual RageBridge mounting holes and installed standoffs.

The box mounts to the frame using these little hanger hooks which interface with bolt heads sticking out of the electronics box. The arrangement is self-securing (the force vector of the box being loaded downwards tends to pull the hooks tighter together), or at least theoretically so – if not, zip ties will rescue it. The rear hooks were swung out, the entire box slid into position and rested on the front hooks, then the rear ones tightened down again.

Much of the wiring was recovered from the old LBS, and I made the RageBridge wiring harness to match it. Here’s one of them mounted to test for fit and wire clearance.

I took some time to finally repair LBS’s somewhat decrepit batteries. These were made 2 years ago and suffered a balancer cable short & fire some time afterwards. Since then, they have been wrapped in bubble wrap and duct tape, charged and discharged without regard to inter-cell balance.

To my surprise the cell banks were at most 50 or so millivolts out from eachother. While still alot, it’s quite a testment to the durability of A123 cells. Too bad the company itself… isn’t very.

I remade the balance harness, this time carefully routing the cables out the side of the pack, then wrapped the entire thing in some foam rubber with Kapton and fiber-reinforced strapping tape. After a night of balance charging, they were all leveled out and ready again.

The two RageBridges were stacked together with some 3/4″ tall standoffs, and linked via a small custom Y-cable going to the receiver. The bottom one powers the cooling fan through the 15V rail (which, incidentally, is going to be missing from RB version 3 to be replaced by a 5v fan output).

Each RB controls only 1 motor per side – the system is set up in mechanical parallel. Hypothetically, if one controller fails, the other can still move the vehicle at 50% power, but it of course depends on the mechanism of failure. If the failed controller becomes a short, then it would be very hard to power against the shorted motor, for instance. There was no intent of providing redundancy, just a convenient means of controlling more current than one Ragebridge can effectively put out.

With no custom software needed, it was drop the batteries in and go. LBS is basically a dumb ROV at this point, no different from one of the battlebots. The RageBridges were put into “mix” mode because the simple 2 channel Hobbyking radio does’t handle any of that fancy stuff.

After putting the other battery in, things started getting…. crowded. Batteries are retained on the bottom with a healthy dose of Velcro, and the virtue of being confined keeps them from jiggling around otherwise.

The wiring harness is admittedly a rat’s nest, but hey, salvaged wiring. It’s also be a good chance to test RB’s robustness under non-ideal wiring conditions.

Closing the top up… I designed this version to be way easier to service in case something goes wrong inside because the electrical box lid is removable through the top, after the board itself is removed.

And here’s the 98% complete shot. At this point, I didn’t yet receive my threaded rod to finish the two standoffs in the front and rear. Without those, the frame bowed a little when I stood on it. But it was functional enough for some superman-style hallway blasting.

There was one problem I discovered during this testing. The motors could exert so much tension on the chain that they were physically bending the rear bogie frame inwards, collapsing the hollow cutout and making the chain jump off the sprocket.

Well, that was dumb. The placement of the chain tensioner was pretty much in the middle of a totally unsupported span. I could, in fact, unbend it with some big channel-lock pliers. I definitely hit copy and paste a few too many times…

To address this issue, the rear bogie frame side was recut to be solid and the tensioner mount itself was made a little fatter and angled.

Here’s a picture of the bottom of the beast, showing the drive chain setup and the batteries. Still, missing standoffs (which have since been added).

I don’t have any testing video yet, since there hasn’t been exciting enough weather to do so. The new arrangement, however, has demonstrably increased torque and better steering response too. The Ragebridges are synchronous rectification drivers, meaning the motors exert a torque against any external changes in speed unless commanded to that speed, so the tracks have increased dragging ability on either side. It can alsofinally turn in place, even with rider weight on it. The top speed is right around 8 or 9 miles per hour.

Once the weather gets more interesting, expect some updates with videos!

The Second Great Awakening of the LandBearShark

Oh, this thing.

LBS is another great example of something I built without much forethought that never quite worked, similar to a certain basket-case go-kart. It has been plagued with reliability problems for its entire life, generally stemming from my inexplicable refusal to use real motor controllers (it’s always the motor controllers) and my insistence on keeping it brushless with R/C type motors. While its initial goals were… somewhat noble, they were pretty much antithesis to what it needed to do in real life, which was to have very high low end torque and fine speed control for scrubbing the tracks during steering, and to push through dirt and snow. To no surprise, the completely open-air electronics deck was not very enthusiastic about doing either of the latter, and the fact that it had always been geared for 20-25mph meant it really didn’t have enough torque to do anything save for drive in a straight line.

Scheduled Plug! I’m still trying to unload stuff. Have a look and see if anything interests you.

The first drivetrain version used rewound C8085-class “melon” motors, hence giving its internal moniker “melon-tank”. Unfortunately as I found out later, the motors were both wound incorrectly and Hall-sensor-appended incorrectly. Hence, this version pretty much never worked at all.  In fact, the most successful rendition of LBS had been its brief DC motor form that I put together afterwards, but even that didn’t resolve the turning issue because of the lack of braking/reversing that the “Beast-it-trollers” featured. So it still couldn’t turn, and one somewhat undergeared CIM motor per side ultimately meant they just overheated and baked. When last winter rolled around, I switched LBS back to a chain-reduced brushless form using (proper) sensored motors. This version has been around the longest and has been consistently working….with the exception that it keeps eating the Hobbyking Car ESCs for reasons unknown. Given that these were never meant to drive something with so much inertia and friction, and don’t have any form of current limiting or control, I am not at all surprised. The motors are also still geared too fast – a top speed of about 18 miles per hour, and I don’t think I have ever stayed on this thing past about 10. After the very mild winter snows melted, I took some parts out of it to let other people borrow for their own projects, and LBS has been living under a table.

Now, with LBS approaching its third Brutal Arctic Winter, it’s time I do something about all of that or close this chapter of my project book forever.

And because I was told that it will actually snow this winter, and with the allure of having a functional offroad/snow vehicle still too strong, it should be clear what path I’m taking!

I’m going to rebuild LBS the way it was meant to be the first time around – bone simple, no frills. It’s going to just be about as smart as one of the Battlebots. Full R/C throttle controls and no more weird sleep-mode contactor closing and opening. One of the causes of my reliability concerns stemmed from the fact that this thing just had too many subsystems being thrown together haphazardly at once.

Here’s the summary of what’s changing:

  • Going back to DC motor drive, using now proven Ragebridges as the drivers. Hopefully, this will be the first test of the version 2 boards.
  • Two CIM motors per side, like the intermediate DC version, geared way down to max out at about 8 miles per hour with much higher torque. My rough calculations show that in perfect traction it will have about 400 pounds of ‘drawbar’ pull. This means it might actually be able to turn in place (skid turn) now!
  • No more weight shift detection, rider switch contactors, tilt steering. Or anything.
  • Actually enclosed electronics and batteries, so going outside in the snow and dirt like it was meant to do doesn’t bury my controllers in grime.
  • Significantly less weight. There was so much wasted metal on LBS that did not need to be there and didn’t contribute to any structural load bearing.

The design has been in on-and-off development for a few weeks now, so most of it’s done already, but I was waiting to make sure I actually started on it before making a vaporware post. Here’s the rundown:

This is what the design looks like as a whole. Notice the much, much lighter aluminum sections and my more extensive use of trussing and triangles instead of big square plates. The aluminum weight on this frame has gone down by about 60% – because previous, every piece was solid aluminum plates!

The new track bogies are also much lighter in weight. Fact is, these things never took any structural loading, so they were entirely for show. There’s no suspension element or frame mounting that is rigidly coupled to the bogie swingarms. As a result, they were made much thinner and simpler. The side which couples to the ‘shocks’ are thicker in section because the loads are transmitted into the shocks and into the main body.

Admittedly, the suspension does absolutely nothing. The mountain bike suspension shock absorbers I got are rated at 700 pounds per inch – in other words, there’s basically no travel or movement at all with 4 of them on there, even if I jump up and down. Hence, I really just think of them as rigid control links in the bogies and not actual suspension elements. They are there to anchor the track axles, closing the structural triangle between themselves, the bogie swingarm, and the central frame.

 

The track pods were totally designed from scratch to be lighter and more elegant, and to minimize the use of 1/4″ aluminum. There’s no more ring of 7 3/8 bolts around the outside of each axle mount, because they were completely useless.

I spent much time trying to play “arrange the motors”, since I wanted to fit 2 motors per side. The track pods were originally designed for an ‘inboard’ drive, or motors mounted away from them driving via a shaft.  Stuffing them into the center cavity between the very short wheelbase tracks along with a method of connecting them to the main body was a bit of a pain, and part of the reason I’m glad this thing doesn’t actually have suspension travel is because if it did, the motors would be bottomed out against the tracks.

I went through several configurations and motor-vs-center-shaft arrangements before setting on this one which kept both motors on one side, hanging off the center shaft in an independent gearbox. The high center shaft meant I didn’t have to use so much metal to join the shaft to the frame since the whole thing can be kept low profile. And, the one-pivot-point mounting meant that keeping tension on the chain would be much easier. The little snail cam thing is designed to keep pressure on that swinging assembly once the chain is installed.

Check out the new drive motor setup – dual CIM motors geared to a common shaft, then chain speed-reduced to the track sprockets.

This thing will need a little explanation. The featureless gray circles are spur gears – for simplicity’s sake, I usually don’t bother modeling the teeth unless I was going to cut those gears out myself. The main spur gear is a hex bore, riding on a 1/2″ hex shaft with bushings inside so it spins on a structural standoff that helps hold the gear case together. A bunch of other hex bore objects are stacked onto the same hex shaft, and the assembly doesn’t have any axial constraining features (snap rings, set screws, shaft collars) save for the 2 end plates and thrust washers. The assembly is hence pretty easy to take apart and put together, and the hex bore transmits torque without the need for a keyway or something.

The spur gears are sourced from AndyMark. In fact, this whole damn thing is pretty much an AndyMark-powered FIRST robot. As much as I some times disagree with the philosophy of providing commercial solutions for a high school competition that allegedly encourages students to engineer and design their own robots, AndyMark really does make some neat little shortcut items. AM products are also usually built for the task at hand – which is to say, not things that you need to run for 10,000 hours with absolutely reliability. Robotics competitions are generally fast and brutal, not necessitating long part life, and I do agree with saving a ton of money making gearbox cases from aluminum sheet metal stampings, for instance, over die-case/billet machined stuff.

This means stuff costs less. Seriously, AM is about the cheapest place you can possibly get steel and aluminum spur gears if you don’t mind the limited tooth options. McMaster would have charged me about $30-40 per gear for the set I’m using, and they come with things like hubs that I don’t need. I’m pirating the popular AM method of using hex shafts for everything because it really is convenient. It’s like a real spline shaft, except improv.

In this gearbox, I’m using their 12 tooth pinion for the CIMple Box and a 48 tooth output gear.

The output is a 7 tooth hex-bore sprocket which I will custom-cut from profile.

The electronics box this time is no longer an open-top bucket. Made of 1/8″ and 1/4″ polycarb, it’s fully enclosed on all 6 sides, save for ports for switches and wiring. A fan will blow straight into the two Ragebridges in the back to keep them nice and chilled. The fan will have a foam filter stage in front of it so it doesn’t try to pull in water, and the RB boards will be conformal-coated too for splash protection. The fan will also help keep the electrical box positively pressurized -exhaust vents out the front, so if there is any place gunk could get in it would be through the slits if there was no airflow.

The Big Switch makes a return in the back side, so if this thing does try to get away from me, I wouldn’t have to full-frontal tackle it. At the breakneck speed of 8mph, too, it should be easy to catch.

The main chassis this time is pretty much just a cage with mounting holes that mount the track pods and hang onto the electronics deck, which can be slid into place and locked by the side mounting screws. Exceedingly simple compared to the first time around. I’ve ditched the big crash bar because there’s no more load cells involved, and that thing alone weighs like 10 pounds. The board itself has some little side rails on the bottom so it won’t sit truly flush as shown – I’ll make a little spacing plate if it’s needed.

Overall, the thing loses about 15 pounds compared to what it has been. While I never weighed it with the crashbar assembly on, the bare vehicle weight before was 65 pounds, so it must have been up to 75. What I lost in metal weight and complexities, I gained back some in those damn CIM motors and gearboxes. Steel and DC is heavy!

I do like the new look better, though. The space frame makes it look even more monster truck-y. Here’s to hoping it can actually live up to the hype this time.

And here’s the pile of parts!