Chuckranoplan 0004: So it begins

Hi, I built a hot-wire foam cutter.

I’ve been spending a little bit of time thinking about how I wanted to approach a hot wire cutter. There were several designs available – hand-held, portable (but large framed) like this, horizontal, and vertical, like what I ended up doing, and plenty of plans and advice from people who have built them were on the Internet. I was also playing around with a few different methods of keeping the wire tensioned. An initial tension set by an adjustable screw or something isn’t enough, since the wire relaxes when hot, so it needed to be some sort of spring loaded tensioner. And of course I was also investigating what materials I could make the structure out of – wood was easy and cheap, 80/20 was more legit and potentially lighter, and in either case MITERS had plenty lying around.

Then I was told I was acting too much like a grad student.

Enraged, I beasted the above product in 2 hours without thinking about it, and it works great. There’s just something about academia that makes you stop and think about things too much.

I could use a little (read: tons) more wire tension, since I bought 22 gauge Nichrome wire, which really should be under something like 50 pounds or more of tension here. A little extension spring provides maybe 10 pounds, but that’s enough to get good results if I cut slowly.

So what’s next after this?

I’ve been waiting for a foamcutting solution before I started on Chuckranoplan 0004, since it was going to be, you know, made of foam and all.  With the hot wire cutter done, I made templates that represented the body sections. They are to be glued to the ends of a piece of foam to act as a wire guide. The templates above are made from 1/8″ MDF (or some equivalent particleboard… it was found in a pile). The laser did a pretty good job on them, leaving a good clean edge finish, so I’ll probably keep using the stuff in the future.

There was plenty of pink foam scrap stored at MITERS, so I found some that still had square edges and trimmed the pieces square on the vertical bandsaw using a blade guide. I must say, foam kind of machines like really dense air.

 

…oh wait.

 

The trimmed pieces were bonded with some foam-safe CA glue I bought a while back, in the absence of the classic solution 3M 77 adhesive. I’ll need to run to a hardware store to get some of that later. They were then sanded slightly so the ends were squared up.

I then glued the templates on the end. This piece looks like it’s a little short to catch the tip of the V there, so that tells me I’ll need a stack of three in the future.

A few minutes of wiggling a chunk of foam around a hot wire later, he result is…

I NEED MORE PRACTICE.

Overall, I can’t say it turned out bad. In fact, it was much better than I had expected. As a confirmation of the general rule of thumb I seem to see everywhere, a slow and steady cut is better than beasting it.

What I did observe, and which warrants the most practice, is making sure I end the cut at the vertices of the cross section simultaneously. In other words, making sure the wire is taking the shortest possible path between the two points. Otherwise, this happens:

If I slip one corner first by accident, it makes a hyperboloid-like surface. In the aeromodelling world, I think that’s called an oops.

It’s just like a real-life loft operation!

I made a test print of a new nosecone design that is substantially smaller than the last one. The ducted fans were going to be mounted on the nosecone portion, but I decided that it was perhaps not a good idea to hang some screaming EDFs off a thin section of printed plastic. So, the foam body section has been made longer in order to mount the fans, and the nosecone got correspondingly shorter. This also made it easier to print – the large cross section at the back was having trouble with splitting and cracking. This new nose should be completely hollow, nonstructural, and easily replaceable when I inevitably faceplant 0004 into something.

This is also a two-layered (1mm wall) print. The weight of the nosecone should be about 1.75 ounces…. meaning I don’t have a scale precise enough to actually weigh it.

The real part will be made from white ABS so it can be painted easily if necessary. I’m almost out of white ABS, but still have plenty of black left over, so this test piece is in black ABS.

Besides the wire slips, the test fit looks pretty good. There will be a total of 3 foam body segments and two wing sections, along with two wingtip pontoons. Looks like there’s alot laser cutting in my future.

Land-Bear-Shark and the CIMulink

Has it really been 2 whole months since I shoved LBS under a bench and sort of forgot about it? That warrants a break in my project timeline!

Since then, it’s been slowly migrated all over MITERS as people make space to work on things. My box of hardware and components has collected a fine coat of grinding dust, other people’s projects, and assorted unwanted parts. More than a few tours of the place in the mean time have been given with the parting promise that it will be done “Soon”.

Well, soon is ideally in the next two weeks. I’m picking the completion effort back up again since I want to be tooling around on it come June 3rd.  Control issues aside, the most important unfinished detail is the replacement of the melons (which was the underpinning of its internal reporting name, Melontank) with Plain Ol’ DC motors. The new drive motors are CIM motors, the same kind used in both Segfault and something like a quarter million FIRST robots. So does this mean I have to call it “CIMtank” now?

The CIM motors are much higher speed motors, so I needed a “preduction” to get the speed of the vehicle back down to the range it was in with brushless power. As detailed last time, I was going to do this using a shady little e-bike planetary gearbox and some crafty arrangement of rotating shafts.

This shaft-mounted speed reduction solution has been affectionately named “CIMulink”, after everyone’s favorite MATLAB simulation toolbox. The aluminum sprocket adapter bolts onto the (rotating) planetary carrier, and it spins on bearings which just ride directly on the motor shaft.

Like so. These are the solid part geometries turned from some 2.25″ aluminum stock. I milled a D flat onto the CIM motor shafts so they directly engage the Currie gearbox input. The output “bump” sits in the adapter’s bearing indentation, though it’s the motor shaft itself which contributes most of the alignment in the system.

I removed the sprockets from the Turnigy motors and bored them out to 7/8″ to fit the adapters. These sprockets were some kind of horrible sintered steel that machined like garbage, and would spark if I fed too hard. They also finished poorly and also smelled really bad. What, I can’t even get real steel in my power transmission components any more?!

Anyways, the 7/8″ boreout  left too little “thread” in the hub to tighten a set screw, so the adapter had a blind hole drilled at the set screw location for the screw to seat in. It functions more as a pin in this capacity.  The flange holes in the aluminum adapter were finished using my indexing fixture on the mill.

With some 10-32 low-head cap screws, the adapters were bolted to the Currie gearboxes. The gearbox didn’t have a bolt circle in it originally – the four holes through which it was riveted for structure were drilled out to a depth of 1/4″, then tapped with a 10-32 bottoming tap.

This is what the CIMulink looks like mounted to the mot…

Wait, there isn’t a mount there…

That’s because during all this time, Make-a-bot was faithfully printing out the motor mounting bracket seen in the initial CAD image. Each one of those took about 1.5 hours…. during which I probably could have just straight up machined it, but I’m both lazy and didn’t have stock of the right size to start with.

Oh, there it is.

The mount is a total of 12mm thick and is printed from white ABS plastic. It’s 90% filled, so it will be more than strong enough for the application. Four 8-32 bolts retain the Currieboxen to the mount, and the ears are through-bolted to the frame.  I couldn’t find 3 inch long bolts to connect the new (thicker overall) motor module, so I had to use 3.5″ long bolts for now. They stick out quite a ways, so I’ll either cut them down or maybe just turn them around later.

I’m also going to change the tensioner arrangement – right now, the chain slings under the white tensioner sprocket. I’m finding that I can’t expand the tensioner diameter any further without it interfering with the teeth of the treads, and the chain is still a bit loose. Moving the chain to over that standoff decreases the tension roller diameter needed, but I do lose a tooth or two of sprocket contact. With sufficient added tension, though, I think this should be fine.

With the drivetrain swap completed, LBS looks…about the same it has been for the past four months or so. Well, it’s already 5 months late, so why do I care?!

The track pods draw about 8 to 10 amps no-load per side at 24 volts on a power supply test.

At this point, I could actually just drop the control rig from Überclocker into it or something and be done. However, that’s simple, realistic, and stands a chance of working, so we can’t have that.

In the interest of eventually pursuing the dual-glove “fingerless” control using XBee radios, I’ve elected to use a 2.007 Arduino Carrier board, a wonderful robot motherboard-like device created specifically for the class this year. It even comes with an XBee socket already. But for the next week and a half, which is less time than I can foresee me designing and ordering boards and parts for the wrist controller, the interim solution for control will be just using the Arduino Carrier to interpret throttle and steering signals from a shady 2.4ghz hand-held radio.

I have, of course, prepared a custom motor control solution for it too.

This is a little logicless power amplifier board similar to the Segtroller boards I made for Segfault. The difference is that it isn’t locked-antiphase, just has two independent PWM inputs and a master disable. Gate drive voltage is derived directly from the power rails by a single 15v regulator. So basically, it’s a Small Cute Full Bridge.

Distinct from all the other random motor control modules I seem to make, though, is the fact that it has an ACS714 Hall current sensor in line with the power inputs so it can sense DC bus current. I’m going to try and make LBS current controlled so it doesn’t jerk around. Current control directly dictates the torque a motor can produce, so it would be like setting a maximum acceleration. A current sense output pin is broken out on the header row so I can feed it back into the Arduino board.

These boards are currently out for fabrication, so they should arrive by the end of next week. That’s a little too close, though, so who knows – maybe I will just pitch a robot controller in it!