Beyond Unboxing: The Harbor Freight Brushless & Lithium Extravaganza – 40V Lynxx Chainsaw

Harbor Freight! Brushless! LITHIUM! IN THE SAME SENTENCE?! Words I and many others never expected to hear, much less experience in person. But here we are, in $CURRENT_YEAR, where a Harbor Freight product contains this…

Welcome back to BEYOND UNBOXING, where Charles buys small consumer / industrial devices to take apart and cruelly comment on their parts and construction. I believe in looking for parts in unexpected places and using them across intended industries, so the intent of the series is to inspire people to go “Huh… well I guess you could use it to drive my electric combination briefcase & portable document shredder”. I only reverse-engineer as far as it’s convenient to do so, because the rest of it is your job.  My previous ventures in this series have all focused on building sillier go-karts and stupider robots, and this shall continue the same trend.

Two years ago, I took apart and analyzed the Ryobi brushless chainsaw, back when these things were still relatively new and fancy. There’s been a recent explosion (and not even in the lithium sense!) of brushless lithium-ion outdoor power equipment market, which is great because those tools are more likely to have motors on the scale of one human butt-moving-power, or the 1+ kilowatt range. Now that Harbor Freight has even gotten in on the game, that’s when you know the concept has matured! Sorry Harbor Freight, please still love me.

I was clued into this when I was on my semi-weekly pilgrimage to Harbor Freight (ask anyone who knows me – this is real) and talking to them about #season3 plans when I asked about when Harbor Freight was going to start going brushless.

 

> mfw "We got something in 2 weeks ago you should see!"

 

I forgot what it was I went to Harbor Freight for, but I sure as hell left with a chainsaw for some reason. Introducing the 63287 Lynxx 40V 14″ cordless chainsaw!

Welp… it begins again. I see that the “GAS-LIKE POWER!” fat-substitute additive marketing line has since been taken over by claims such as “BETTER THAN GAS!”. I can think of a few things better than gas, such as nausea and indigestion. This is the presentation – unlike the Ryobi (whose packaging status I haven’t checked in on), the whole chainsaw ships in a box without the chainsaw part sticking out.

 

That’s because it ships disassembled, with the saw chain in a separate baggie and the bar dismounted. I think this is better for the product’s survival rates. Anyways, once you get inside, the presentation becomes a bit messier, with stuff taped in place to other stuff. But we’re not here to wax our neckbeards over how the product appears in the box – no, not all. After all, I would have been satisfied with a presentation any more nuanced than Harbor Freight staff literally throwing the chainsaw at me. I would even be okay with it if it were off at the time.

Here’s all the parts! Bigger white box is the battery charger, little white box is the battery itself.

Well, since there’s still boxes, let’s unbox them! This is the battery charger base and battery. We’ll be checking out what is going on inside both of them. The battery feels awfully small for the saw it’s supposed to be running, but that’s lithium being deceptively power dense, so I won’t prejudge yet. The battery charger feels very light – a sort of “We know this is 1 PCB inside here, but here’s our attempt to make it look like it houses a miniature nuclear power station!” design language.

The battery comes apart with just four Torx T20 screws. Nice try, product design gods. The first thing we notice is that yes, there are in fact 10 cells in there – 10 of what self-reports as Samsung INR18650-25R cells, quite a reasonable choice. The 18650 market in my opinion is just as, if not even more competitive than the flat cell market, since it’s a singular form factor used in multiple industries which production engineers can really mutually stroke over. The best commonly available 18650 cells are 3.6Ah and But Charles, this site is selling a STOP LINKING ME SHITTY CHINESE “5000mAh” 18650s BECAUSE THOSE ARE ALL FAKE. Experimental pre-release ones, as of my last knowledge sync, were approaching 4.0Ah per cell legitimately – so who knows, maybe one of these days.

The next thing we see is a 40 amp fuse.

Nope, not an electronic fuse made of MOSFETs, or a cutoff circuit made of the same. Just an honest-to-Baby Robot Jesus 40A ATO fuse, soldered in place. You blow it, you’re done! Unless you’re me and selectively bypass your fuses for extra hilarity in life. The low-cost-ness was starting to show through.

The OEM of this battery is shown on the silkscreen of the PCB. They also seem to be the OEM of the whole unit. Holy hell, they have a Brushless Drill. AND A BRUSHLESS SAW. And their choice of color coordination is based around MIKU BLUE AND BLACK! Damn, did I start a Chinese tool company and forget about it or something?

YOU KNOW WHAT THIS MEANS? HARBOR FREIGHT BRUSHLESS DRILL CONFIRMED Serious talk though – their 40V blower is the same as the Harbor Freight 40V brushless blower. I found this unit less enticing because it’s more or less a ducted fan in a tube.  But I really hope we start seeing the brushless drill soon.

Fancy little fuel gauge light on the battery, a normal characteristic of lithium drill batteries everywhere. This fuel gauge is powered by a Chinese 8051-like microcontroller

Something felt wrong, though. I inspected the board thoroughly for any signs of current measurement devices, which would let you ‘coulomb count’ and keep track of the battery state of charge. But there was no such hardware. Nor were there even cell-level taps so the controller can sense what the battery cell charge levels are and accommodate for them. You usually see this in the form of large power resistors that are shunted in and out of higher-voltage cells. The controller keeps the cells within a certain charge variation window, or can declare the pack dead to the power tool if one cell takes a dive.

I couldn’t see any circuitry at all that could be described as a battery management system. This, plus the presence of the internal 40A fuse (that needs disassembly and soldering to replace), makes me fairly sure that this battery is running by the Grace of Robot Jesus alone. The little fuel gauge light is likely just a voltage sensor.

I even stared at the underside of the board to see if there were parts I missed. Nope – besides connector pins sticking out, I could see no signs of cell taps, current sensors, or bleeder circuits.

Now, truth be told, there is precedence for un-BMS’d lithium batteries. In fact, my old e-bike battery was a solid blob of 2.4Ah 18650 cells with just a thermistor wire coming out besides the main charge-discharge wires. It’s stayed working for the past ~5 years and continues to take in 6 to 7Ah every charge. If all the cells are well-matched for characteristics, then over their design lifespan they will never drift apart in charge level enough to be dangerous. Plus, there’s a hard fuse on the outputt in case of shorts. So this is some pretty intense cost cutting, or perhaps cost tradeoffs being made; purchase better quality cells, skimp on monitoring hardware.

I’m actually not sure how I feel about this. With all the recent chatter of explosive phone batteries, seeing a pack as ‘naked’ as this is a little concerning. However, even with a BMS, if you have a counterfeit or defective cell that just decides to let go, there is actually scant little you can do to prevent exothermic events from progressing. This is part of the Curse of the Hoverboard SEG-THING, DAMMIT! we experienced last year; I’ve taken apart SIX of those things. All of the batteries have a similar BMS card on them, and as far as I can tell, they all work. But if one counterfeit cell sneaks into your poorly verified and documented supply chain, you’re done and your product’s reputation is ruined.

So really the question is how MUCH do we trust this OEM to only use well-matched cells? WE REPORT, YOU DECIDE.

So up until this point, I’ve not actually shown how the two mate together. Like basically every tool battery these days, they slide together and lock, needing you to squeeze the latch to release. Nothing surprising here!

 

Here’s the inside of the charger after disengaging the four T20 screws holding it together. The “this is one board” theory is revealed to be true. Not that it’s surprising, since welcome to 99% of all consumer electronics today.

 

There’s no intelligent battery stuff going down here, really. It’s a 42 volt power supply, probably with constant-current and constant-voltage modes that automatically switch and that’s it. Really, that’s all you need to charge lithium batteries. The simplicity of the battery charger’s LED signals on the front panel speak to this. Either it’s running in CC mode and charging the battery up to, oh, maybe 80-90% SOC, or it’s in CV mode and it’s “done”. If anything else happens, like the battery voltage to start with is too low or it stops drawing current suddenly, is an “error”. Else if it’s been trying too hard, it’s an over-temp error.

So I had been wondering about the fan – it doesn’t seem to point at anything meaningful, like at the heat sinks. So what’s it trying to cool?

 

Well, here is the battery in its home orientation. It looks like the fan is supposed to pull air through the battery case – which IS vented, so no IPxx protection for you – and help keep the cells cooler.

So in conclusion, there’s nothing very revolutionary about the battery. It’s reasonably middle of the road technology, well cost optimized, and well packaged. Time will tell if the lack of real battery management circuitry will pose a problem. Let’s move onto the more interesting problem, the chainsaw itself!

 

I put together the whole unit for fun – clearly, if you are just after the motor, you don’t need to assemble the saw.

 

The frontmost (righthand) yellow knob locks the chain bar down in place, or it dismounts the whole light-gray cover at the same time unbolting the chain bar, if you untighten it. The winged yellow knob to the left adjusts chain tension by moving the whole bar in and out. This is much the same story as the Ryobi, and seems to be common to chainsaws in general. In fact it seems to be one-better than the Ryobi because instead of tightening two nuts and a small screw to make the tension adjustments, you only handle two very large and visible knobs to make these adjustments. I dunno how helpful that is to chainsaw-monglers in real life, but I LOVE HUGE KNOBS it appears to be a better UI decision.

The disassembly begins! T-25 screws hold the handle onto the body. After those come out, the handle is removed. On the back, more T-25 screws hold the motor cover on. I basically began removing every screw in sight on the back side, and the motor cover was the the highest level group of screws. It popped off to reveal:

Okay, this is getting interesting already. We see that the motor is a rather large inrunner-type motor, instead of the outrunner type in the Ryobi. A worm gear-driven oil pump to supply chain oil is tied directly off the rear of the motor shaft. All of these screws holding the pump on can be removed now, to free up maneuvering the motor out later.

 

By the way, just out of curiosity, I took apart the tension adjustment mechanism, and it is a nifty small crown gear setup.

This crown gear actuates a threaded rod, running longitudinally here, with a nut riding on the end that pulls the bar back and forth.

The next step to disassembly is removing the motor chain sprocket there in the middle. This involves either retaining ring pliers or two small flat-drive screwdrivers and a lot of creative swearing. I used to despise retaining rings in middle and high school before I gained the tools to work with them. Now I love them! Overhaul is basically one big snap ring!

All the T-25 screws on this side pop off, and then the saw basically falls into two halves cleanly.

This thing has a nifty auto-shutoff clutch/brake that is actuated by the big black flap to the upper right. The black flap has to be pulled back for the saw to run. There is a sensing switch that otherwise prevents the motor from being started, as well as a mechanical stop that consists of a pin being spring-loaded into a hub mounted on the motor shaft. This mechanical assembly is shown in the rest state above, where it prevents the motor from turning as well as interlocks the controller.

As I have not actually chainsawed anything in half recently, I figure this is an automatic stop at the end of a cut when your saw falls through the now-cut material. Any small amount of pressure and movement seems to be enough to click the flap back to its home position.

The flap and the motor-stopping pin shown in the working position. Anyone know why this saw has such a feature when the Ryobi didn’t?

 

The controller is the next easiest thing to slip out, as it just sits in a square cubby. Along with it comes the battery connector and two switches: the trigger switch and the flappy interlock switch.

The clutch parts can be removed as soon as the saw is open.

The motor shroud comes out next after the removal of three small fiberglass-plate retainer clips held in by Phillips head screws.

 

Finally, some last T25 screws later, the motor can be lifted out.

And here it is. This is actually a huge motor. It physically outsizes the Ryobi motors by at least twice in volume and weight.  It has a 12mm double-D-to-10mm-flats shaft, similar to the Ryobi. The big nosecone houses the chain-stop clutch mentione before.

I am utterly surprised at how huge the motor is, and am even more satisfied that it’s found in a $170 NEW saw. This motor is something I’d pay $170 for, period.

The controller, though, needs some more loving. First of all, it’s ON-OFF ONLY in stock form. It ramp-starts the motor up to full speed once both AND-wired (series connected) switchs are closed. When either one is released, it hard-brakes the motor. So hard that the first time it did so, the motor torqued itself out of my hand and chased me around the shop.

I also practically destroyed it freeing it from its potted housing to take a look at the hardware. The architecture is “Classic Jasontroller” as people familiar with my brushless ESC vernacular will understand. It’s built like every e-bike controller I’ve ever seen, in other words. Discrete gate drive circuitry with big and brute force linear regulators.

The MCU is a very typical-Chinese STMicro 8-bit microcontroller, likely a genericized or pin-and-code compatible version available on the Chinese market, even though it has ST markings.

Given that the ESC is “one speed” and basically an e-bike controller, I’m not going to spend much more time talking about it. It’s a known quantity.

And a test video, where my friend forgot the “I’m done with motoring” cue and kept recording for a few awkwardly silent seconds:

So here are the guts of the 63287. My conclusion: It’s an undersized battery and undersized controller for the amount of motor that’s in this thing. Having “one speed” – that’s full speed – compared to the variable speed controller in the Ryobi makes a little more sense now. When the controller is only fully-on and the MOSFETs are not chopping current, there’s less losses to worry about and less heating. That means you can get away with a smaller controller with less semiconductors.

You’d just hope the motor never wants to draw more than 40 amps for a while. That IS a good 1500-1600 watts of cutting, mind you, and through some VERY TERRIFYING locked-rotor testing I discovered the controller does have a stall-protection cutoff feature as wel as a rotor blockage detection on starting. You haven’t lived until this motor has thrown an 8″ Vise-grip at you, but I suppose that’s pretty damn close to dying for something I proclaim to be living-related.

Without further hacking, though, the controller is borderline useless for EV purposes. I could MAYBE see a case for a robot weapon or using it in some other related application like meloncopters for fun, where you’re more likely to be running at full power. However, that battery will not last very long under said full power conditions – 40 amps will drain it in minutes, and if you go over that, you’re likely to blow the fuse up inside.

So I think we see the “Harbory-Freightyness” expressed through some interesting cost-sensitive decisions on the OEM end, such as the lack of a BMS for the battery and no variable speed control. But dat motor – let’s investigate it more.

That is an interesting-ass back-EMF waveform. Hey, this reminds me of my ‘middle finger wave’ days! I can’t even remember what I was building then, but it sure as hell didn’t work.

I spun it with my Milwaukee brushless drill (because my life is brushless) to collect this motor’s intrinsic BEMF profile, a.k.a what the motor really wants you to drive it with. To collect the vernacular “Kv” value – RPMs per volt at no-load, there’s a process involved.

You can take half the peak-to-peak value of this waveform as seen on the oscilloscope and use the relation Vpp/2 [Volts] * delta-T [seconds] / 2π [radians] = Vpp [Volts] * delta-T [seconds] / (4π) [radians] ¹. This yields a value in SI units for the BEMF constant, V*s / rad. Generally, radians are considered unitless so they are not written in unit analyses, but I like to keep them there for less confusion when converting into RPM (rotations per minute, or 2π radians per minute)

For this motor and the measurements shown, the Vpp is 21V and electrical period of the line-to-line voltage is 13.5 milliseconds. This yields a BEMF constant of 0.022 Vs/Rad, which in “Kv” form  RPM per Volt is 423.

To get the mechanical RPM of the motor, this basic RPM/V value must be divided by the number of magnetic pole pairs. 423 RPM/V represents what the “unit” 3 phase motor with 2 magnets and 3 phase windings would be. This motor has nine phase windings, but how many magnets does it have?

Three 3mm socket cap screws later and you can very carefully and gingerly work the motor apart. I chose to remove everything from the back side in order to not deal with the mechanical stop hub. The magnetic pull is very powerful and taking the motor down this far is definitely not for the faint of heart or fancier of fingertips.

Counting the magnets reveals there are 6 magnets, or 3 pairs of magnets. Consequently, the RPM/V-as-you-see-it is 423 / 3 [Pole Pairs], yielding 141 RPM/V.  As a sanity check, I actually used a tachometer on the motor being driven by the controller, and measured about 6300 RPM on ~40 volts, yielding a value of approximately 157 RPM/V.

This is a slower motor than the Ryobi’s approx. 300 RPM/V.  All other parameters being equal, this motor trades speed for torque. Since I don’t chainsaw things reguarly, I’d really be interested to see videos of this saw in competition with others to see what the variation in speed does to affect the cut. But what it means for “other” applications is the need to use less gear ratio for the same output speed and torque, possibly simplifying design.

 

The motor has a hefty fan on the end and the rotor is reinforced by a stamped steel cup that is also epoxy-bonded to the magnet and the laminated(!) rotor. I think this rotor can survive some overspeed excursions just fine.

Pretty densely packed windings. The airgap diameter of the rotor is exactly 50mm, and the stator lamination unit is 32mm long. I measured the line-to-line resistance as an average of around 39 milliohms. This puts the motor easily in the class of the common 63mm outrunners for power throughput ability. Compare Overhaul’s SK3-6374-149 lift motors at roughly the same Kv and 40-42 milliohms phase resistance; this motor has more iron and copper by mass than the SK3s, so it will be able to hold a certain power dissipation (load) for longer.

Like I said – wow, so much motor for comparatively little everything else! I guess that’s where the money went… everything certainly shows a little for it. I see this product as having a potential future upgrade path with a much larger battery and controller that can push 1.5 to 2x the power into it. That would be chasing after the Greenworks 80V tools in power, I think, having seen a GW 80v chainsaw motor before.

To use this motor well, I think it should be paired with a 150-200A controller to really take advantage of its power capability. It’s not sensored, unlike the Ryobi motor, so that complicates things a little bit – you can’t just throw a Kelly at it, for instance. Maybe BRUSHLESS RAGE a SimonK-flashed large R/C controller or whenever we see a bigger VESC design.

Anyways, is someone interested in a cordless chainsaw without a motor? Contact me. Oh, it’s also taken apart into a billion pieces. Should go back together with a bit of tinkering!

¹ Okay, so I actually confused myself a little because I haven’t mentally checked my motor math in a while. It’s often the case that “BEMF Constant” or Ke refers to the BEMF contribution of one phase. This is most commonly encountered in academic treatments of motors such as this one (See page 13 Equation 14) and this one (See Equation 7.6 in Section 7.3, pp. 36) because it is simpler to use the single phase contribution in vector math with the other three phases. There is an extra 1/sqrt(3) difference from the L2L (line to line) measured voltage versus the single phase-to-neutral (L2N, P2N) contribution. It’s how we get 208V mains electricity from 120V.  However, I seem to do things differently, concentrating on using the motor. When you power the motor in typical BLDC trapezoidal commutation fashion, you power 2 phases. Therefore, you can’t use the Ke of 1 phase only in isolation – the phase 120 degrees offet from it will contribute the additional sqrt(3) voltage. Using Ke alone as-described in those papers will get you a Kv [RPM/V] that is sqrt(3) more than reality. I had to look back through my notes and crosscheck this with physical measurements to convince myself I wasn’t going insane. Be careful with information on the Internet, kiddies.

Beyond Unboxing Returns with some #Season2 Shenanigans: Axent Wear Kitty Ear Headphones!

It sure feels good to be back doing one of these again! It’s been a while since the last one, about little hub motors that you can now buy instead of e-mail me about; since then, they started making EVEN SMALLER ONES! Now we’re talking 8wd Chibikart Pike’s Peak Hillclimb Edition levels, or the go-kart equivalent of the Human Centipede or whatever. Your tastes might vary.

On this edition of Beyond Unboxing, we explore a product that is so quintessentially me for some reason that everyone has felt the need to go “Hey! Have you seen this thing? It’s so totally you!“. I’m of course talking about…

Little known story: The whole reason my ears existed on Battlebots, and subsequently I became known as “cat ear guy”, was because I made them as a knockoff of Jamison’s ears which were a directly inspired knockoff of the Axent Wear. See, unlike Jamison, I never finished mine, so they were merely hollow shells. Not only that, but I basically brought them as an afterthought – as a “okay, might as well look goofy if needed” accessory stuffed into the very top of my luggage.

In fact, his knockoffs were so convincing that many people also told him that “Dude, you got ripped off!” when they heard of the Axents.  Ah, the circle of Internet fame.

This does seem a little out of the ordinary as something I would just go out and buy, since it’s not some kind of obscure motor controller or power tool… but there’s a story to that too. Apparently the producers of Battlebots were at CES 2016, saw them, and were reminded of me. It helped that (allegedly) the booth personnel were fans of the show. A week later, I had a unit in hand after it was given to them and shipped to me! Awesome. Brookstone, if you want your name on #season2, we need to talk. You guys need to put a liiiiiittle more effort into sponsorship than that, wink wink, but not much more!

So here we go… Oh boy.

Yup. #Season2 will. Be. Insane. Now, those who are genre-savvy with Beyond Unboxing posts will know that I pretty much only make these posts if I already have plans for something. In a way, they are a barometer for what I might skulk off to do next. I’ll explain how this ties into the #Season2 (I will pretty much only refer to #Season2 using a hashtag, by the way) plans soon.

At first, I didn’t really intend to take these apart. But then I was showing somebody, and I dropped them. And then, I only had one side’s lighting left over… uh oh!

Get ready for some Beyond Unboxing, where I take these apart gratuitously in order to see what might have gone wrong with the wiring when they were dropped, and alongside, give a quick tour of consumer product design.

Here is the beginning of the presentation. It comes packed in a plain black, non-showy form-fitting zipper case. This is an alien concept to me, since I guess I’ve never owned “nice” headphones in my life until recently when I picked up a HyperX Cloud gaming headset secondhand, and it also had a case.

Inside the case, the headphone cable and boom mike live on the left, while an included USB micro-B cable for charging is on the right.

The unit by itself. Once again, I don’t claim to know anything about nice headphones. I assume they all have this many degrees of freedom!

I’m not sure if I am a fan of the sound yet. It’s quite “boomy”, reminding me of the times I tried some Beats by Dre – all bass and low end, and nothing spectacular elsewhere. I suppose it fits well with current pop and hip-hop music. Either way, it’s well known that I am a Hipster of the Nth Degree when it comes to music, so I explicitly absolve myself of any authority on this matter.

A closeup of the lighting effects. The LEDs are clearly white – just the plastic colored ring determines the color of the glow. My issue was that the right-hand side (as pictured, so “left ear) was very sporadic, like a connector was barely hanging on or something.

For those who haven’t seen these used, the headphones are passively powered via the cord like you’d expect – but the lighting and external speakers (in the ears) are battery-powered, hence it needs periodic charging.

Let’s start popping stuff apart. First, the earpads can easily be slipped off (I keep wanting to call them “ear poofs”, but they have a name):

This exposes four small screws to open the housings.

Use a small Phillips driver (I had a #1 – this seems to be correct) to open the housings.

Here’s what they look like on the inside. The left side has the audio input and microphone jacks. The signals travel to the other side which contains the amplifier and power supply board.

The signal input board is held in by two small screws. I also pulled out the spring clips which give the housings a bit of “detent” feel in their yokes (the forks they’re mounted to) – that’s how they stay in place if you fold them. There’s a small plastic plug that the spring clip mates with that pulls out easily. From there, the housing can be full removed…

..If you’re more careful than me. I tried to remove the housing entirely, but I misaliged the other side and broke off the other pin-like structure its mounted to. No consequence, but there will be more sloppy movement as a result. Being more careful instead of pulling harder probably could have avoided this. Alas, the difference between a hub motor and little plastic speakers.

Regardless if the housing comes off the yoke or not, the plastic accent ring and cap can be removed from the inside using four screws. Two of these are accessible only if the input board is removed.

Check out the LED ring. I plugged the board back in temporarily to show the lighting effect.

The LED board is smooth white on top and made of two pieces – the printed circuit board with the LEDs is mounted to the white ring, which is a light-diffusing plastic like what would be used on a LED backlight. This softens the glow and prevents you from seeing discrete LED dots.

A little prying and the printed circuit board comes off. The LEDs are a unique side-emitting package instead of the far more common top-emitting type.  The LEDs fire into the internal face of the light-diffusing plastic, causing the ring to glow very evenly.

This thing has become more hardcore than I had anticipated. I was thinking that there would be an easy way to change the color of the LEDs if needed. Not so much with these – they likely chose white since it can be slightly filtered by the color of the accent ring into any of their colors. Add to that the oddball package needed and your choices are limited.

The three components of the lighting accents… or Axents, if you will.

Moving to the larger board, the amplifier board – I damaged the battery connector trying to remove it. It’s held in place by a very one-way snap/detent, which I broke before getting the connector to back out. It still contacts fine however. Your experience may vary.

The other connectors are secured by a small amount of adhesive, but this comes off readily.

The amplifier board! I wish I could say something about its design, but it’s not a motor controller. I’ve not worked with audio ICs in the past, so unlike said motor controllers where I can tell you whether or not it’s worth using, the specific implementations of the ICs used are lost on me. All I know is it cannot flow 500 amps.

I played with searching for their datasheets, however, and in doing so I discovered that some of these are pretty damn obscure. As in, no English-language results worth following up on. I actually had better luck hopping on a Chinese search engine like Baidu. The vast majority of results regardless were trading websites, not manufacturer’s datasheets or similar, and they all claim ORIGINAL PART!!!! like it means something. It seems like a lot of these chips are genericized and made by many factories for myriad applications, so you just pick one off the cloud. The same phenomenon gave us Seg-things.

The major ICs listed, which I could track down anyway, are…

  • CSC8004 – SOIC-16 package, some kind of 2-channel amplifier. I could only find a datasheet for the 8002, but I assume the 8004 is just the 2 channel version of it.
  • TPA2017D2 – 20QFN package, a Class-D 2 channel amplifier. If I had to guess, this one drives the external ear speakers, since Class-Ds can push more power with less dissipation and the ear speakers do get quite loud.
  • SC51PS704 – an 8-bit microcontroller. Looks like one of many different 8051 clones – similar 8051 clones are used in a lot of Chinese e-bike controllers. So few pins are actually connected on it that I think it only handles button presses.
  • BT608M – this was the single hardest thing to find. There’s lots of places trying to sell it to me! When you start getting into places called “ICMiner” or “Ic-ic.com”, that’s when you part is obscure-ass. It’s also apparently a model of hospital bed, and Bluetooth-compatible speaker system. If I stopped searching early, I might have assumed it’s some kind of unimplemented Bluetooth hardware (but why even populate it then?). But I don’t think so – based on various side-channel mentions of it, such as this spammy blogpost, and this short title, I am led to believe it’s involved in the button-controlled volume for the ear speakers. If you can find this datasheet, you are better than me.
  • NJM2100 – a dual op-amp, SSOP-8 package.

Since these units are made in Taiwan and commissioned by a big company like Brookstone, I assume they have their entire network of Chinese parts traders which I realistically have no handle on at all.

The housing on the right-hand side contains a similarly shaped though not completely identical LED board, as well as a small battery in the hollow portion of the black cap.

 

The right side LED board taken apart. This one has more markings!

I temporarily hooked both back up to check for differences in light output and the patttern, but they function pretty much identically. By the way, as soon as you disconnect the battery, the system will not arm lights or external sound until you plug it into USB power at least once.

The ratings on the battery are obscured by a bit of rubber tape.

Scraping it off, you can see that the battery is 1.0Ah. Assuming you don’t crank the ear speakers at full tilt, this should last for several hours of using the lighting and ear speakers together. They claim 5 hours – I haven’t verified this yet, but some rough calculations – 3.7V * 1.0Ah is 3.7Wh nominal, of which 80% is typically available (assuming it lets you drain the battery to 20% SOC, divided by 5 hours gives an average usage of 0.6 watts. Plenty of sound for you and probably the people in your immediate vicinity.

None of this solved my lighting woes, though. The next step was to disassemble the headband to see how the signal cross from one side to another.

I’ll get this out of the way right now: I hate snap-fits. Hate everything about them, but they are the go-to these days for consumer products because of less parts cost (no hardware). But they’re generally one-way only – you try to dismantle them and they usually, you know, snap. Those that don’t just break off you can usually only get very limited assembly-disassembly cycles before they no longer hold.

That being said, the headband is held on by 18 terrifying snap-fits. Four are at the corners where the headband ends inside the little plastic bezels – pull those upwards (in the shown orientation). The headband itself has 10 snaps that pull towards the center of the loop:

And the method of transmission is revealed. A ribbon cable! Seemingly a somewhat fragile ribbon cable. I hooked the lighting back up to see if any joints here were loose. It seems like the very act of manhandling the ribbon cable area trying to undo the snap-fits fixed whatever the issue was, because now I had both sides of lighting again.

Okay then.

From website reviews, it seems like some times there are issues with one side completely losing functionality. I suspect an issue with either this ribbon cable (I also hate ribbon cables, but just a little less) or the interconnects between it and the left- and right-housings – tiny cables made of braided Litz wire which is enamel-coated. This strikes me as being rather fragile, though most audio signal cables I have seen are made of this wire.

A closeup of the ribbon cable. This is oriented with the inputsside to the right.

Alright, as long as I’ve gotten this far into it, let’s keep going and see what the ear speakers look like. To get to its mounting screws, there is a plastic cover which has two screws that needs to be removed. This piece is the “detent” surface for the headband adjustment, which generates the clicks you feel when you pull on it. It then slides up and away.

Three silver screws attach the ears. Two are directly accessible, the other one requires you to mash against the R+/R- connector pictures above a little bit.

Here is an ear!

After some prodding, I found that the bottom is held in by two small snaps which are easily released, but the top appears to be a plastic snap rivet which, predictably, snapped. Its wreckage can be seen at the top of the ear.

The ear speaker is a cute little 1″ driver encased a small bucket that is sealed with a ring that has some foam tape. The back of the bucket is open, but the ear is still a very small enclosure. The ear speakers sure sound like small speakers in a small plastic enclosure, like most Bluetooth speakers I’ve had the pleasure of experiencing – a ton of midrange, and not much else, muffled and tinny at the same time. An audiophile I am not.

The depth of the ear speaker.

The ear accents are constructed like the ones on the headphone housing, using side-emitting LEDs pointed into light-diffusing material. The blue speaker icon is a separate piece and easily removable.

I peeled back the rubber compound holding the LEDs to the diffuser. There’s only two LEDs here.

So there you have it! Now I have no clue how to put this thing back together! Hey Brookstone…

I hope you’ve enjoyed this tour of what a modern consumer electronics product basically looks like – lots of molded plastic, snap fits, and housing little printed circuit boards. I feel like they still have a few little quality issues to overcome, but in general the amount of effort that was put into these was beyond what I expected.

That same level of effort also makes these things much harder to modify, as I had said at the beginning. Why would I be thinking of modifying them though!? That’s because of….

#Season2, Or: BattleBots, the Anime?!

I’ve been throwing around this false hashtag #weeabot on purpose for a little while now (false meaning I don’t ACTUALLY have a Twitter or Instagram or Tumblr account where tags actually, you know, matter – I consider Facenet hashtags to be kind of vestigial) on places like r/battlebots or the BB official pages. Anyways, what it embodies is my continued unstated, half-assed life goal to increase the intersection between engineering and anime. Put simply, there’s just not enough of it – at least in meaningful ways. Just like I like my science fiction rather high up on the hardness scale, I like my engineering depictions somewhat plausible. This in general never happens.

I also have a desire to offer counterpoint to the likes of Kantai Collection, which has (in my opinion) completely ruined the mecha musume genre. I like girls and machinery, and consequently girls with machinery, but Kancolle’s character designs essentially have nothing to do with the machinery. You don’t just weld battleship parts to a schoolgirl archetype and try to sell it to me. And the worst part is, it’s spawned endless look-alikes which have the same problem. It’s gotten so bad that even Toyota has started doing it. That’s truly when your genre jumps the shark*.

I can’t not say IMPOSSIBRU, sorry.

To matter the reason, if I don’t like anything on the market, I tend to make my own. RageBridge (and RageBridge 2) was a direct response to how much other motor controllers in the market segment sucked (AND STILL SUCK).

Now, an artist I am not, but luckily I have the help of the magical and talented Cynthia, who also brought you Arduino-chan as seen here last year. Besides returning again to help with the fabrication and electrical work for next generation Overhaul, she will also be creating team cosplays uniforms designs, as well as an “Overhaul character” in the vein of the mecha musume series and the, umm, Priusettes, which you loving and adoring fans may cosplay as in the live audience! One that doesn’t suck.

Here is a preview of things to come…

So there you have it. While I’ll be cranking on making OH2 hypothetically easier to service, faster, and more reliable (read: less fail), she will be making the brand. A robot TV show is about more than just the robots, after all. And especially in this day and age, you won’t really know what becomes popular due to the Internet Hype Machine ahead of time, so perhaps this is an exciting new direction. Hell, if all goes well, we’ll have a character for EVERY  #SEASNON2 entry – there will be surely something for everybody.

And lastly – so why did I feel the need to “mod” the Axent Wear? Because the shade of blue doesn’t match the new “team color” (and robot thematic color) for OH2, digital goddess and “That girl Charles has a sticker of on everything he owns” Hatsune Miku:

Of course it’s a Miku-van

It’s more of an aqua/cyan color, which involves a wavelength of LED that is not common at all, much less in sideshooter package. What I’ll probably just do is 3D print translucent-white accent rings (the currently blue parts) and coat them with something that is more aqua. (To my knowledge, nobody makes an already-translucent aqua/cyan 3D print filament).

Oh yeah, definitely expect the whole bot – however it ends up looking – to be plastered in character stickers and corresponding thematic paintwork. Since Miku is a copyrighted character, it will probably be whatever the OH2 character ends up as. I have a few places that can provide the necessary vinyl graphics.

And finally, for something vaguely robot related…

Those are rubber bumpies, similar to the ones used on OH1 but smaller and more numerous. Yum, bumpies. All shall be explained soon – I have over sixty design screenshots of OH2 to write up as soon as I’m more than 90% sure I won’t get kickb&4lyf for doing so.

#season2 #weeabot

*Not to shit on Toyota too hard for this campaign, since they did hire many different amateur artists to make the individual designs. It’s made the Prius about 2% less horrifying in my mind.