Beyond Unboxing: The Great Cambridge Chainsaw Massacre; Ryobi RY40511 Cordless Chainsaw

Hello everyone,

I’ve decided that I need a career switch. After 2-3 years of being a shop ninja, I’ve decided to move on and become a…

…Chainsaw murderer. I’ll see you shortly.

This is probably the shortest turnaround time for a Beyond Unboxing post ever. Around 2 in the afternoon on Sunday, I received a tip from Shane and the motley crew at Freefly about this device and how it might be worth looking into.  An hour later, I was blitzing down Storrow Drive heading due west towards the Home Depot in Watertown, MA on a war path to obtaining one. Just to check it out. And an hour after that, it was parted out completely on my shop bench.

Why the hell do I find tearing apart consumer products so amusing? Probably because I know both how the sausage is made as well as how the sausage will be cooked and eaten. As with other Beyond Unboxing posts, the focus is how to divert these products into small electric vehicle or robotics applications, in the context of teaching newbie builders and hackers to be resourceful and to see parts everywhere.

From the past few years in meddling with lithium ion batteries and brushless motors, I’m always giddy to see them used in more and more tools and common implements, but they’ve been primarily in the domain of the ultra-high-end until recently: Spending $300-400 on a drill for parts, to me, is not really worthwhile when you can engineer around the same problem using other commercial parts, or even custom-made ones, for much less. This is part of the appeal of things like mini-jasontrollers and angle grinder gearboxes: To duplicate the functionality would imply spending an order of magnitude or more, and the chopped up commercial product would be workable for all but the most stringent and demanding of applications (Former students, I’m counting on you to put T-nuts and Jasontrollers in space).

I’m glad to see these lithium ion and brushless systems coming down in price and going up in power. The advent of the Inexpensive Chinese Brushless Motor has been beneficial to many industries. First they started small with compact drills and drivers, then moved up to saws, and now bigger power tools whose domains were previously dominated by gas engines. Once you get to things with power levels in the hundreds and thousands of watts, you can ride them. Perhaps the advent of this tool is the closing of a circle of life for vehicle builders: Years ago, kids would build shoddy vehicles powered by gasoline engined chainsaws and leafblowers. Now, they can finally do so with electric. And have it not suck.

Here’s what’s inside a Ryobi model RY40511 “40v” cordless chainsaw. I’m surmising I know (directly or through only 1 or 2 degrees of separation) the intern who first conceived this and put it together, because as you’ll see, the hardware is quite familiar….

First off, this is what the box looks like. GAS-LIKE POWER! I can’t believe you guys trademarked that. I mean, it’s basically in the vein of “polypropylene-like” modeling resins for expensive-ass 3D printers (sorry, Objet!) or “fat-like” additives for greasy fast food.

…and would it kill you to use a longer box?! What is this, Minecraft? How many of these get bent up and broken in shipping?

Putting a picture right on the box of an outrunner. Damn, I wish I paid more attention to the aisles of Home Depot now! Maybe I could have gotten on this months before!

Step 1: unboxing. This is pretty much one of the only normal pictures this post will contain, so savor it. Included is the saw unit, a battery, and a charger.

The battery in all its glory. I’d wager by the oblong shape of things, it’s an 18650 pack made with 1.5-1.8Ah “power” cells laid flat in a “W” pattern. You’ll see later that this wasn’t a bad guess – being a little familiar with the state of the industry helps (and some math: 55Wh / 40V is about 1.4, figure in some overhead).

The battery has two terminals besides the + and – called T1 and T2. Most lithium packs have a connection to the battery management system or similar, and this format varies by manufacturer.

While I was plotting the deconstruction of the saw, I put the battery on its charging dock. It’s a fast charger – 1 hour or less.

I’m extremely happy that lithium ion power tools are becoming the norm, because that means an end to the era of those irritating as fuck “Revive your battery!!!” kits and guides sold by industrial charlatans all over eBay and the like, because those clutter up every possible search you can make with power tools terms. That only “works” for nickel cells (it’s called Zapping, and it doesn’t actually fix much in the long term), and if you tried that with a lithium battery, congratulations on your newly made IED.

Taken out of the box. Where a 40-50cc gas engine would go is a big hollow battery cavity.

Hmm, weird. The tabs inside the tool would only connect to what is called T2. This will come into play later.

And here is the whole device. It weighs about 10 pounds without the battery, which is way lighter than a gas powered saw. Chain bar oil container at the front, variable squeeze handle at the back. I liked how it felt – it’s definitely designed from the ground up to be an electric saw, and not a crude rush to market retrofit of a gas saw.

That’s all the generic unboxing post you’ll get from me.

Break out the wrenches and hex keys! The majority of the body screws on this thing are T25 torx. First to come off is the chain cover, with four screws.

The two M8 nuts come off also, and the drive sprocket and tensioner assembly are revealed.

The chain and bar assembly come off easily once the nuts are removed.

To remove the drive sprocket and flange, you’ll need a snap ring plier, or some tiny screwdrivers and a bucket of patience. Retaining rings used to be my most hated component when it came to taking something apart in my middle school and high school years, because I didn’t have retaining ring pliers!

But now I love them. Welp.

The smaller case screws take T20 torx. There’s three on this side of the saw.

However, I found that the side plates were keyed into the gray top. There’s more T25 screws on the top plate, and then it lifts off pretty easily:

…to reveal the Jasontroller… uhhh, okay, Jasontroller. Two 470uF bus capacitors and discrete FETs, two per leg of the three-phase bridge, is all I can see at this point. The FETs are Alpha-Omega (what kind of semiconductor company name is that!?) AOT470 type – kind of low end of the market, but they’ll get the job done I suppose.

The board is actually quite well designed and marked. Hell, everything is labeled already! Even the motor hall sensors and the trigger switch wiring harness. The ‘throttle’ is 5 pins labeled S, S-, S+, -, and +. The “communication” wire leads to terminal T2 on the battery.

If I had to guess, this assembly contains a “throttle switch” that tells the controller you’ve hit the trigger (before the signal changes), and the S, -, and + are what would be a 3-pin Potentiometer sensing element or Hall sensor sensing element. I haven’t verified this on the actual throttle, by the way, but it makes sense.

Back to the saw! This assembly in front of the motor appears to be a bar oil pump driven from the motor, or perhaps feeding the motor. It has to come out for the motor to be removed. Two T25s screw it into the motor.

But that wasn’t all. To remove the motor, I had to be able to take the other half of the plastic shell off. This took a longer T25 bit than I had in the form of that green set. It was 5:45 PM on Sunday.

I’m proud of the Commonwealth of Massachusetts and the City of Boston for not supporting the usage of speed cameras, and of Mikuvan for not…. uhh, exploding. The closing staff at HF were waiting for me at the front door when I pulled in. Thanks guys!  This is a T-handle Torx set, 42926.

(The observant would note that the local Home Depots close at 9pm, but…)

With my newfound long-reach Torx set, the case screws come off.

The goods are within sight. Check out that motor – it’s like a pointier, more gritty version of a Hobbyking outrunner!

Hell, it even says the size on there. However, this motor house, whoever they are, seems to label their motors properly: By stator diameter and stator length! Hobbyking would actually call this, in all likelihood, a 63-54 type motor. The can length compares.

The motor is attached to the controller through these terminal block things. I guess they wanted something to distinguish them from an R/C outrunner. Should have used 4mm Bullet connectors!

The motor sits over a Hall sensor board. This board uses 120-degree oriented Hall effect sensors, but what is interesting is that they’re surface mount devices, and oriented vertically. Having a custom motor without a nosecone, unlike the R/C outrunners, would let you do that. Having the sensors in such close proximity to the magnets’ ends, not sensing through a steel can, surely contributes signficantly to their ability to not drift significantly out of time at high speeds (That video is the reason why we made those Hall sensor boards slotted and adjustable).

Removing those two T25 screws on the oil pump reveals the pump mechanism. Now, this thing is clever. So I’ve never taken apart a chainsaw before this point, so I’m not sure if this is in common use, but it’s cool anyway. The little gear inside the pump body is engaged by a helical spring slipped over the motor shaft (more visible in later pictures). This spring is a slumlord worm gear, meshing with the pump’s own gear.

I didn’t get a picture of the right side of the pump where it connects to the black rubber tube, but it’s a lobe looking thing that acts like a one-rotor gear pump. It’s enough to squirt a little chain bar oil onto the blade steadily, nothing special.

Continuing the motor removal with 3 more T25 screws:

And the system is out! I love this motor. Not only does it have a big fan cast into the end, but it has a normal shaft. It’s 12mm diameter, 10mm across flats. You can straight up slam a belt cog or chain sprocket over this and use the flats with some giant set screws and be done with it. Or, you know, just use the friggin’ chain and make a killer ice-racing machine.

I studied the plastic parts for a while. They’re mostly useless for our purposes, but looking at them is a great manufacturing study. The injection molding crew spent some time on this! And imagine those molds being made.

Here’s a close up of the controller. The construction is “jasontroller-like”. The gate drive circuitry is entirely discrete. Hell, the microcontroller is a STM8S, a staple for Chinese motor controllers. I bet this pinswaps for a generic Chinese e-bike controller pretty well.

I decided to take apart the battery next to see what’s inside. They put a bit more effort into this one: It needs a T15 security bit (with the center pin). Luckily, I had such a thing.

Four screws and the lid pops off. Holy crap, that’s a ton of electronic jibba-jabba for a battery. On the left, a big fat current sensing shunt. On the right, the battery management circuitry and charge balancing circuitry. On the very left, edge, buried under the board, were two semiconductors of some sort – I think they might be TVS clamping diodes. I decided against unsoldering each and every cell connection to try and find out, but again, it would make sense.

To lift the battery pack out, there’s two tiny hidden screws on the bottom, right where it says RYOBI. I’m going to guess that placing one of them right under the “O” was intentional.

To find hidden screws, I usually drag a screwdriver in a grid pattern around the tops of stickers and badges until it “sinks”. It is a very common tactic to hide screws under labels, stickers, and those little rubber bumpy feet if your appliance has them. Sadly, not everyone loves giant-ass cap screw heads sticking up every which way on their products like me. I’m a mechano-aesthetic snob.

A close-up look at the power side of the BMS. The 1 milliohm current sense shunt resistor has some little analog filtering passives growing on it which may or may not lead to the “T1” and “T2” terminals. Again, to find this out for certain is your job required unsoldering 12 cell tabs, and I wasn’t going to delve in that deep yet.

Again, if I had to guess, these do not (or do not only) lead to the T1 and T2 terminals, but is also used by the BMS to determine if it has to cut off the battery pack current.

BAM! Who was spot on about the battery? Here’s a LG Chem 21865 1.5Ah “power” cell. I say “power” because there’s often 2 ways you can optimize your lithium ion battery: for power or for energy. It all depends on how thin your terminal plates and separator is (the thinner, the more volume is occupied by active anode and cathode material, but the more resistance and hence less ability to dump amps). Most power tools are going to use “power” cells, most cell phones and low drain devices “energy” cells. For instance, in the 18650 (one size smaller) size, 3Ah “energy” cells are becoming common, and these are the next larger size and only 1.5Ah. But as will be seen, they will push current.

(Today when I learned about the world of customizing electronic cigarettes. What the great carbide-tipped fuck? Seriously, it’s like the old adage of racing – “if it moves, race it”: If it’s a electromechanical device, mod it.)

With the saw fully vivisectioned (never before has this term worked so well, since everything is still working!), let’s start doing some science.

The “throttle” is a plunger switch – on the side, it says it’s a Defond model EGA (see page 44 of this catalog). As suspected, it’s an ‘enable’ switch, plus a 3 pin potentiometric element. Which pins are which, I haven’t dug into.

First, the motor running at top speed (it sounds awesome) draws anywhere between 4.2 to 4.4 amps at the battery voltage measured at this instant in time (39.2v).

No-load waveform of the motor, showing voltage (39.2V) and electrical frequency (1,389Hz)

Scoping two of the phases tells me that at full throttle (100% pwm – no switching waveform seen, just the commutation frequency cycling of the FETs), the motor spins at 1,389Hz, or about 12,000 rpm. To get from electrical Hz to mechanical RPM, you take this waveform frequency ( “electrical cycles per second” ), multiply by 60 (“electrical cycles per minute”), then divide by the number of pairs of magnetic poles of the motor. For this motor and many R/C outrunners like it, it’s 14 magnets, so 7 pole pairs. You arrive at 11,905 RPM, with some amount of error nobody cares about outside of an instrumentation course at MIT.

At this speed, with the Hall sensor timing given, the motor’s Kv (“volts per RPM”) is approximately 300: 11,900 RPM / 39v. This is fast for a motor of this size, so to be useful in a vehicle, it will require significant gearing.

I next measured the low end – what the controller will run the motor at if you tell it to do so at the lowest possible speed. What I noticed right away is that there is a speed-dependent cut-out, presumably to prevent saw damage in the event of the chain getting stuck. Let’s find out what this is:

Cut-out speed of the controller, under load, 66 eHz or 500 RPM

Often, these motor controllers will hold the motor spinning down to a lower speed than the minimum speed they will start up at, termed the cut-out speed. For this controller, it was 66 eHz, or roughly 500 mechanical RPM.

By the way, I tested all these speeds by grabbing the motor while it was spinning, wearing leather welding gloves. At one point, the glove started smoking when I did a haul all the way out to about 65 amps. Do not do this. Ever.

If you do, do not grab the pointy fan bit.

Cut-in speed (minimum speed) of the controller, approximately 350 eHz or 3000 RPM

However, the minimum cut-in speed of the motor was about 3000 rpm. This implies the following:

  • The motor must be able to start up with relatively small load and get to this 3000 rpm speed quickly
  • Once there, it will happily be loaded to any degree provided the speed does not fall below 500 rpm.
  • I wasn’t able to accurate characterize the startup torque available during the startup routine, because that required too many hands.

This may ruin the usefulness of this setup for go-karts and related (e.g. no foot-starting available), but should be still useful for scooters (push starts with feet is part of the game). I try to tell people to model controllers/motors with low speed lockout similar to sensorless motors: the motor shouldn’t be able to tell that you are there, and this is accomplished with sufficiently high gearing.

With a 300 RPM/V motor, you need plenty of it anyway!

I was curious about what the T2 pin connection on the saw’s connector led to. Scoping it, I saw something which was basically an analog voltage that varied with the current being drawn. Zooming in close enough to the scope showed the PWM frequency, so I’m pretty sure this is just a straight tap from the T2 terminal of the battery pack, possibly corroborating both tool and BMS having access to the current sensing shunt in the battery.

I couldn’t tell what the sensitivity was, given that I was out of hands. It seemed nonlinear: 4 to 6 amps occupied a 1-volt division, but so did ~20 to ~35 amps (did I say something about the glove smoking… I was dumping 900 watts into myself here). So there may be something else at play.

Next, let’s find out the resistance line-to-line of the motor. This is the determinator of how much the motor can pull, current-wise. Using the 4-wire method, I got that it was about 29 milliohms. Solid – this is on par with an R/C outrunner of similar size.

(The 4-wire method is basically: Two terminals whose ONLY JOB is powering the device under measurement, two terminals whose ONLY JOB is to measure something. This isolates the effects of parasitic resistance in the power wires from the sensing wires.)

By the way, in 2.00gokart, every student characterizes a motor for Kv and R in the fashion just presented.

One last thing I wanted to find out is if the controller was stupid flexible enough to run without the battery and its sensing circuitry. Hey, the absence of the battery current sense line would mean it’s drawing 0 amps all the time so it shouldn’t ever turn off, right!?

The answer was yes, it will run off just any old power supply. No hackery needed. Supply 38 volts, turn motor.

It will in fact run down to 20 volts.

summary

So what do we have here?

The Ryobi 40V cordless chain saw is:

  • A 300 rpm/V, 14 pole, 63xx class, 29 milliohm brushless motor with a 12mm flatted shaft and beefy aluminum mount
  • A controller with Hall sensors, a free plunger throttle (add your own lever/knob), and maybe an irritating speed-dependent cutout that will cause loads slower than 500 rpm to not work.
  • A battery and charger with internal battery management circuit that can dump at least 60+ amps for some time.

Gee, that sounds like a go-kart or scooter to me. Thanks, Ryobi!

I invite anyone else who is curious to pick one of these up and maybe try running it in something. I’d say you would be hard pressed to find matched components of this power level for less than $200, battery included. The downside is that a spare battery is $100+ by itself, but as can be seen, the controller will happily use any ol’ battery. I’m curious to see how the speed-dependent cutout affects real world operation, since I couldn’t get a good handle on how much available torque it has between 0 and 3000 RPM, the controller’s “minimum speed”.

As technology marches on, so the spoils of yesterday’s cutting edge shall become available to the homebuilder/hacker. Hopefully this series will contain some more interesting tools and equipment in the future!

 

Random Shenanigans to Break In 2014! Beyond Unboxing with Ikea Drills, LandBearShark’s Battery Surgery, More Van Nonsense

Happy new year and welcome to Big Chuck’s Automotive Blog! The mission of BCAB is to share and discuss all of our misadventures in being shadetree mechanics. Not only will I post all the questionably sound work on my own wreck, but every week, there will be one story submitted by you, the readers, about any aspect of your life pertaining to your own automotive project or rolling piles of garbage, whichever you would prefer.

I kid.

The way my site visits and interesting search hit terms have been slippin’ lately, though, you’d figure I’d have gone full-time car blog. Luckily, that’s only partially true. It used to be that I got plenty of weird and interesting search hits, site referrals, and the like. I feel like I’m losing my touch there – these days it’s all full of “electric bike” or “electric go-kart” or “How to avoid electric shock installing I’m a hybrid battery” (sic) and stuff. Booooooooooooring. Perhaps I should be glad that I’ve been genericized to that point, such that my content has become more generally relevant. But I do miss the days of the Arduino powered butt massager.

This IAP, I’m watching over MASLAB which is using the IDC classroom and my shop space, while also ordering things and preparing for the next round of 2.00gokart in the spring. MASLAB is historically a ‘shopless’ activity… which means that students break into or ninja the use of whatever shops they can get into in order to finish their robots. This year, they faced difficulty getting their usual space in the EECS department, and several of their core team and students being my former students, I got pummeled with appeals for space. Now, it creates way more work for me (what amounts to an actual full term class’s worth of preparation and shop orientation sessions), but what better way to spoil even more undergraduates? Furthermore, I think it’s better for them that they have official access to much more resources that can be properly used (i.e. under my titanium fist rule) than students trying to steal and beg resources from any space they have access, or “get” access to; which in my mind is patently unfair to those who are also just starting out and don’t Know Somebody – MASLAB is often one of the first “Build a robot” things a lot of freshmen do.

Anyways, I went to Ikea:

I defy anyone to challenge me for the title of “Best Ikea Space-Filling Ratio”. Flat-pack furniture works best with a vehicle which can be 90% modeled in no more than 3 solid modeling features.

Now, none of this is actually mine, since my own life is containerized into a number of typical milk crates, and I wouldn’t touch anything Ikea produces with the most bargain of Harbor Freight allen wrenches. But while on the tour in the most perfectly structured consumerism experience, I naturally gravitated to their tool section. The selection was naturally all custom-commissioned products geared towards assembling only their shit – again, part of the most perfectly structured consumerism experience this side of Buy & Large.

1. Beyond Unboxing: Ikeaworks (FIXA 7.2v drill)

(To quickly skip to the other sections, here’s…

2. Landbearshark’s new battery

3. The Weekly Van Shenanigan: Bodywork, oil pan gasket, and fixing that subyiffer

I spent a little while looking at the FIXA (I keep wanting to say Fixya) power tool series – they have things as interesting as a 14.4v hammer drill and a standard two-speed drill. Ikea being an entity that nominally prides itself on inexpensive low-key quality (as opposed to, say, Harbor Freight, which prides itself on Fuck You), I did expect that these tools would have worked just fine in their intended household lives. It’s like a domesticated goose – all you really need is a guarantee that it will poop everywhere, perhaps not with the flamboyance of a wild Canada goose.

I found their 7.2v drill/driver interesting. This is because it evoked the shape and function of the classic Handiworks mini-drill found at Walmarts back in the Early Noughties. This little thing fueled the rise of the 12lb weight class. For a while, Harbor Freight carried a 7.2v variant which made it into the 2nd and 3rd iterations of my own Test Bot. That was about 2005-2006. Those drills disappeared with an increasing RMB to USD trading ratio, as did most of the low-v0ltage (9.6v, 14.4v) drill/drivers from Harbor Freight.

An overwhelming sense of curiosity and nostalgia drove me to pick up one of these units. I’ll say right away that for $24.99, it may not be worth it in general, even if it were identical to the old Handiworks. However, the package ended up being more compact and a higher ratio – it definitely could be robot-applicable for somebody. So thus begins the Beyond Unboxing of the FIXA 7.2v drill/driver.

The casing is shed with a few Phillips-head screws from one side. No hidden screws here. The first thing I found is that it really IS lithium ion! There are two cells, 1500mAh each, size 18650, of lithium cobalt or lithium manganese chemistry (not LiFePO4). These 1500mAh cells contrast with the modern generation of laptop and other device cells which are typically 2400mAh, likely because they are “power” cells made for industrial use – wider temperature ranges and higher allowed burst currents – than “energy” cells which simply try to provide the longest runtime.

It has a cute little BMS board attached to it that handles both charging and discharge protection. The large FET at the top is connected to a current sense circuit that actually causes the drill to shut off if it’s near stall or suddenly locks up. This manifests itself as suddenly losing power, but it resets once the trigger is let go of. A nice protection to have if you sell your tools to total rubes for sure.

This current sense circuit depends on a sense resistor, which, like the Jasontrollers, can be easily chopped to a lower resistance if somehow you are compelled to do so, God help ye.

Four more screws and the gearbox comes apart. The gearbox is unlike the standard 36:1 or 24:1 drill gearbox. Rather, the gears are somewhat smaller in pitch, 0.6 module by my closest guess (about halfway between 32 and 48 pitch, which is what they look like). What was surprising is that the first stage of the geartrain is all metal. Usually, the first corner to be cut on these is to replace the first stage with nylon gears, ostensibly for noise reduction but we all know really why.

The gearbox is 3 stages of 16:14:45, resulting in a total ratio per stage of 3.8125 and a final ratio of 55.41:1. The final stage has 5mm thick gears, compared to the 4mm thick in the rest of the thing, to handle high torque demands.

The ratio is a little high for my tastes for a robot drivetrain, but for those not aiming to hit 15-20mph, perhaps just a slightly larger wheel will suffice. Remember that I’m clouded by a decade of smashing robots into each other; very few parts which are generally useful make it into the top echelons of the battle-tested.

I wasn’t quite curious enough to take off the chuck, since the left-handed locking screw was better installed than most Harbor Freight drills and I wasn’t in the shop at the time. I suspect that the traditional drill gearbox bellhousing, albeit in a smaller size, is on this one. The drill shaft is also most likely a 3/8″-24 thread like normal, but I won’t speculate more unless I have it taken apart. It has a nominal rating of 400RPM – which, through the gearbox, yields a motor speed of about 22,000 RPM, in line with the typical small drill motor. The motor in question is a 7.2v Mabuchi RS380 knockoff, unlabeled.

2. landbearderp

Remember the Landbearshark video? Well, after that and the additional snowstorm a week ago…

Whoops. I guess I went a little too hard. I noticed something was wrong after the batteries never recovered above 16 volts even after a day of sitting. Both battery packs had cell groups which were either at 0 volts completely, or at severely damaged levels like the 1.38v group above. This was the batteries which caught fire once and also survived months of tumbling in the original Landbearshark, finally having been done in because the rest of the thing worked too well.

Damn. Well, with the potential for more weather in the next few months since this winter has really been making it rain snow, I had to replace the damaged batteries before LBS could work again.

I went digging in my lithium nuclear arsenal, which I obtained after the MBARC class ended and I confiscated all the lipos (with exception of those taken by R/C airplane experienced students). Most of the packs were in the 5S and 6S range, which was good for LBS, but they did not have built-in battery management boards and I didn’t want to add a big balance harness to LBS. However, there were also these:

One of the teams went commercial/industrial and picked up these from Batteryface. These are sold with a “PCM” module built-in, so they don’t need to be externally balance changed. I’ve used these boards a handful of times before in not-my-own applications, and they do work just fine, but I find them a little too wimpy on the discharge: for most high burst current or other high power apps, I prefer running straight battery, because the management board usually introduces more resistance or has built-in current limits.

But LBS is not particularly high power. I could also fit four of them in the space left by the 6S6P A123 pack, netting me much higher energy density: 22.2v 40Ah instead of 19.2v and 26.4Ah. I’d trade the unneeded brute force for ease of use and built-in protection.

Sounds like what these were made for! So in they go.

To get four packs in the space of two, I had to put Y-harnesses on my Y-harnesses. I chopped the discharge leads off my old battery, which had a type of 6mm bullet connector I no longer had on hand, and spliced them to two Deans plugs each. The students added quick disconnect terminals to their batteries, which I cut off and replaced with Deans.

Installing the batteries was a fun game of OH GOD DON’T TOUCH THE FRAME RAIL WITH THE EXPOSED PARALLELED CONTACTS.

The batteries are mounted to the electronics box with strips of Velcro. Their height is just under that of the box itself, so they shouldn’t be going anywhere.

Suddenly, the wiring looked less nest-like than before. Not because I made it better, but now all the excess runs were the correct length to tuck next to each other! Science.

LBS has yet to make it back outside since the weather has been… “nice”? Test riding around the building showed me that it was very much more responsive. Not only because the voltage has jumped a few from the A123s, but that the batteries must have been damaged for a while and have been sagging more for the same current draw. Hopefully the next bout of winter commuting will put these to the test.

Rewinding before the new year once again, I’ve officially commenced…

Operation: RUSTY MEMORY

It could refer to several things. First, the old magnetic disc drives that used straight iron oxide (rust) to store information; the earliest kinds that went into the “refrigerator” hard drives. Next, the fact that you can’t quite remember something.  Finally, all of the really shitty bodywork I’m about to do to prevent more problems down the line.

I’ve been leery of doing bodywork for a while, despite a slow buildup of arms in the interest of doing so. The past has shown me that I have no patience for making smooth and clean lines or blending paint. However, the recent pressure of winter and its associated wet salt slush has caused me to examine some of the spots in more detail. I’ve determined that there’s some areas where I’m getting close to now-or-never, because the underside and “hidden” rust. Remember these boarding step holes? They’ve gotten bigger:

 

Soon, they will soon break the outside body lines… and hell if you’re getting me to rebuild external lines. Other trouble spots include the majority of the left underside for some reason – the right side is pretty clean, but the left is all sorts of beat up.

Before tacking the more complex curvature of the step, I decided to practice more on a less visible spot – the left rear corner. Here’s what it looked like in May:

A complex confluence of edges in the corner with quite a few holes and thin areas to patch up. The plan I formulated was to cut away as much of the bad areas near the holes as I could get, then grind or wire brush off the rest. About two weeks before starting on this, I thoroughly coated the interior of the bodywork in the area with that “rust converter” compound and let do its job for a while. Hopefully this will help prevent the interior sheet metal from being a problem in the near future.

Let’s get started. I once again dibbed the corner of the garage for a weekend, though I didn’t need the lift. What I did need was a spot that wasn’t -30 degrees out, so things could actually cure.

When I was using the lift before, I had noticed that the arms block the area I need to work on, regardless of orientation. So I had to use a whole trade of jackstands (the proper collective noun for jacks is a trade) in that area. Since I’ll be violently thrashing on this area for a while, I used not only a stand on the frame, but on the corner of the rear suspension also, kept the floorjack a little pressurized under the differential, and chocked both right wheels in both directions. A little paranoid? Perhaps, but I also prefer to have thickness.

This is what that region has devolved into since that time. The holes have grown a bit, and much of the weaker rust has fallen off. The treatment compound is seen in green.

The excise begins by gently hammering at the panels to loosen up more internal rust. This is item #2 on the list of 3 things Mikuvan does very well: dropping little flakes of rust everywhere. The other two, of course, are emitting black mucuses of various viscosities, and raining bearings.

Maybe I should have done this before spraying the converting compound…

Next up is imprecise angle grinder cutoff wheel excise. The biggest trouble spots went first.

About 1/3rd way through the process. When the angle grinder became too unwieldy to maneuver, I switched to a Dremel with a small cutoff wheel. My goal was to eliminate as much of the obviously rusted metal while retaining features that will help rebuild the area. I cut off a piece of the wheelwell (the right angle upside-down-L cut is center in the picture) to gain more maneuvering space for cleaning the area behind it. After the cutting, liberal application of wire wheels knocked out the rest of the surface rust in the surrounding area.

What I do not have is a picture of the completed surgery, since much of this process was mentally streamed. More of the steel on the inner wall to the left was removed, as was the area with the perforations in the upper left, extending about 4″ towards the front (where the wirebrushed paint starts).

I retained my tactic of using 3 layers of fiberglass cloth (I’m not sure of the weight, but it is pretty heavy) that were nipped from Solar Car.

I decided to split this work into two sessions to make sure I didn’t have to hold onto too many things at once. I patched the outside first and let the glass cure overnight.

The next day, I worked on the inside. To cut the cloth to shape, I just mashed the fabric against the repair area and used a marker to get the rough outline, then cleaned and simplified the marker scratches to a cut pattern. The pattern was used as a template to make two other pieces, each very slightly smaller. The marker dissolving into the fiberglass resin is the cause of the blue outline.

This area looks pretty gnarly because of the untrimmed glass and the fact that I didn’t try to rebuild the down-facing curvature of the original body section.

The day after was cleanup, filling, sanding, and painting. The tattered glass edges were trimmed flat with a Dremel and cutoff wheel first, then the whole area manually sanded with a sanding sponge and then some fine regular sandpaper. I used a small amount of Bondo to smooth the transition between the glass layers and the remaining bodywork, but as the masked area shows, did not attempt to resmooth the surface from where I wire brushed off the paint.

Paint was the same procedure of primer, color, and clear I used on the rear hatch. This took several hours by itself, then I let everything dry overnight once again.

Once the outside was dry enough to put some masking tape on, I sprayed a few coats of underbody coating compound on the inside repair to seal it as well.

Here’s what it looked like as of a day or two ago – it’s gotten a little dirty since:

I make no claims to ever passing auto body school.

Based on my research, a real auto body guy would have removed far, far more metal than I did, and also have remade at least some of that inside corner box section in steel, if not straight up remake the entire sheet metal of the wheelwell area. When I can afford this service, I suppose I’ll have that done…

I’ve learned since that they make this stuff called “spot putty” which helps fill in the very small resin bubbles that are visible; plus that I’m not spamming enough resin onto the top ply to start with, a phenomenon also visible in the rear hatch work. These lessons will hopefully be put to use in repairing the boarding step hole soon, since that is a more visible location (with the door open, anyway).

Subyiffer

A quick break from inhaling styrene and toluene led me to try and figure out exactly what the deal was with the “subwoofer-like device” that I touched upon previously. I thought it was barely working, but it turned out to be sympathetic vibration transmitted through the front sheet metal and dashboard components. It was in fact totally out.

I’m sure a normal person would have replaced this with a set of 12″ subs in the back, but I dunno, it’s already there and most likely working anyway. What if it was as simple as some dumb fucker not connecting one of the wires? Wouldn’t I feel foolish for not trying to make use of it at all!?

Besides, the 12″ subs come after the electric drive conversion, as do the tacky underglows and stancing.

It was 20 degrees out, in the middle of winter, in Massachusetts. And here I am, outside, with nothing but flashlights, using an oscillosope and soldering iron to probe the paths that the signals took in an attempt to debug the amplifier board. Consider the frightening possibilities if I had put this much effort into actually studying something.

I ran into a slight metaproblem – it was so cold that my small cheap soldering iron, which travels in the robot service toolbox normally for use in the field at events, froze its power cord off. Literally. It probably deplasticized in the cold and in the process of me unfurling the cord, it broke off.

I borrowed a Weller station from MITERS in the mean time, which seems to use a plasticizer that didn’t also grow up in the South like me.

So if you’re ever stuck debugging the subwoofer amplifier circuit of a generation 3 Mitsubishi Delica, here’s what it is. The whole thing is OEM’d by Matsushita (a.k.a Panasonic). There’s 7 wires leading to the board – three of them are the ground, 12v, and “power on” lines shown, the others are two channels of signals and their return lines.

What the frontend of this amplifier does is add the two stereo channels together, then severely low-pass filters it before sending it to the amplifier power IC. This is all done actively, with op-amps. In fact, the circuit is eerily reminiscent of this generic mono amplifier circuit.

The ENABLE line controls the coil of a little relay that is in between 12 volts and the amplifier chip. Guess which wire was open circuit?

Naw, couldn’t be that someone forgot to wire it up.

(Alternative explanation: The new head unit that came Free With Purchase did not have an external amplifier enable output, so this was left unwired, but that doesn’t explain why someone took the speaker totally out…)

I took the cheap and dumb way out: Jumping the enable pin directly to 12 volts. When I turned the ignition key, I heard the faintest click of a relay and a little pop from the speaker.

Scoping the speaker’s terminals shows this nice waveform coming out. The cutoff frequency does appear to be around 150Hz.

I packaged everything back up after this fairly simple hack, and immediately ran back inside to defrost. Let’s be honest here – this little thing didn’t add that much to the experience; finally some noticeable low end now, but it seems that it saturates (clips) relatively easily. Not that I blame it at all. It was another box ticked off on the checklist of completion.

Oil pan rebuild

Item #4 on the list of things Mikuvan is good at: leaving small droplets of oil wherever it goes.

It’s done that ever since the first start. I’ve always attributed it to a crank seal problem, but recently I started suspecting otherwise, because the symptoms didn’t really line up with just a crank seal issue. If I had a leaky rear crank seal like I suspected, then the oil drops would be coming from very specific, concentrated locations. Same goes for the front seals. I’d at least see a consistent, concentrated ‘shot pattern’ from the two locations in my parking spot… which I assure you is terrifyingly disgusting.

Instead, it just seems like it’s been shitting everywhere. Since I’ve been getting under it more recently, I’ve also been keeping track of the cleanliness of the underside: Every time I look under it after cleaning up all the oil and grime, there’s more of it everywhere. There was no one consistent spot at all – the whole underside near the engine would be wet all the time and spots would appear almost at random. It was less oil leak and more Self-Applying Undercoat.

As the weather got colder, it just started getting ridiculous, and once again I was faced with a now-or-never scenario. I was beginning to suspect the oil pan gasket a few weeks ago when I first began noticing that it was always wet on the outside. Hey, shouldn’t a gasket keep the leaky stuff on the inside?

During the suspension work on the lift, I gave that area a very fine look-over.

This is the forward left side of the oil pan. First, that gasket is pushed out completely and ripped. Second, it’s disgusting.

I figured, once again, that even if it was not the main problem, it could be a contributor or aggravating factor, and that I should at least inspect it. I braced myself for yet another Yak Shaving Session where I end up having to remanufacture the entire assembly. How bad could it be!?

(Always Famous Last Van Words)

I looked at the service manual for a bit and then began disassembling the oil pan screws.

First to come off is the oil level sensor. I have no idea how this is supposed to actually work – and it just barely does. Usually, if I park on a non-flat area, it’ll throw an oil level light; and not knowing how leaky the thing actually is, I check every time, only to find the majority of the time it’s totally fine.

I have no pictures of the pan removal process, since my hands were well-covered in oil, and the whole thing just sort of fell off after I undid the last screws and put a little pressure on it with a scraper. Well, that’s certainly a bad sign. From my Youtube instructional video surfing, you’re almost supposed to use said scraper to cut the whole thing off.

Oil pan removed! This is the first time I’ve ever physically seen the inside of an engine, from the bottom end. Who the fuck thought this was a better idea than a brushless motor?

The fact that oil is everywhere on the alleged gasket sealing surfaces is, again, not a good sign.

So here’s the deal with the gasket. First, on top, there’s a layer of silicone. Not, say, specially formulated gasketing compound, but I swear it was just clear RTV used for bathroom tiles.

Next, there’s a paper/felt sort of gasket, the type that you would buy specifically to fit a model of engine.

And finally, there was another layer of silicone. 

Silicone-on-paper-on-silicone didn’t exactly strike me as a professional repair. I suspect, again, that this was like 5 different dudes’ repair hacks and I am the 6th.

Unlike bodywork, I considered this a blasphemy against the  mechanical gods. I rage-cleaned and stripped the entire pan, paying special attention to the gasket seal surface. I also cleaned up the bottom of the pan some. Luckily, there were no metal particles to be found, but there was a sizeable amount of brown and black sludge; likely from before I was also meticulously keeping track of oil condition.

Here’s a shot down the line of crankpins and big ends. Once again… who thought this was a better idea than twirling a magnet (or a blob of copper and steel) on a stick?

Here’s a picture of a 3-floor building sized engine’s crankcase while we’re at it. It’s only a little bigger.

I didn’t get any pictures of the re-gasketing process, but it entailed borrowing a small amount of this RTV material designed for gaskets and laying it out in a roughly 1/8″ wide bead in the pan’s top groove, around the outside perimeter, and in a circle around the bolt holes. I then let this cure overnight under the influence of a halogen lamp, and retorqued the screws according to specification the next day.

After a week and a half of this, I’ve only seen 3 new oil drops after having placed a white spill mat on the concrete parking spot. They were concentrated around this spot:

I didn’t notice this little vent in the bottom of the transmission bell housing until I was under there looking at it. Under the cover is the torque converter and its crankshaft adapter plate. If I had a crank seal leak, I would have seen the majority of the oil drops originate near here.  It might still be leaky; I have not confirmed its health in either sense. For now, however, the oil-shitting problem seems to have been resolved in the majority.

This concludes the latest Big Chuck’s Automotive Blog entry. Make sure to check back next week as I make even more mechanics and auto body technicians cry!