Beyond Unboxing Returns with some #Season2 Shenanigans: Axent Wear Kitty Ear Headphones!

It sure feels good to be back doing one of these again! It’s been a while since the last one, about little hub motors that you can now buy instead of e-mail me about; since then, they started making EVEN SMALLER ONES! Now we’re talking 8wd Chibikart Pike’s Peak Hillclimb Edition levels, or the go-kart equivalent of the Human Centipede or whatever. Your tastes might vary.

On this edition of Beyond Unboxing, we explore a product that is so quintessentially me for some reason that everyone has felt the need to go “Hey! Have you seen this thing? It’s so totally you!“. I’m of course talking about…

Little known story: The whole reason my ears existed on Battlebots, and subsequently I became known as “cat ear guy”, was because I made them as a knockoff of Jamison’s ears which were a directly inspired knockoff of the Axent Wear. See, unlike Jamison, I never finished mine, so they were merely hollow shells. Not only that, but I basically brought them as an afterthought – as a “okay, might as well look goofy if needed” accessory stuffed into the very top of my luggage.

In fact, his knockoffs were so convincing that many people also told him that “Dude, you got ripped off!” when they heard of the Axents.  Ah, the circle of Internet fame.

This does seem a little out of the ordinary as something I would just go out and buy, since it’s not some kind of obscure motor controller or power tool… but there’s a story to that too. Apparently the producers of Battlebots were at CES 2016, saw them, and were reminded of me. It helped that (allegedly) the booth personnel were fans of the show. A week later, I had a unit in hand after it was given to them and shipped to me! Awesome. Brookstone, if you want your name on #season2, we need to talk. You guys need to put a liiiiiittle more effort into sponsorship than that, wink wink, but not much more!

So here we go… Oh boy.

Yup. #Season2 will. Be. Insane. Now, those who are genre-savvy with Beyond Unboxing posts will know that I pretty much only make these posts if I already have plans for something. In a way, they are a barometer for what I might skulk off to do next. I’ll explain how this ties into the #Season2 (I will pretty much only refer to #Season2 using a hashtag, by the way) plans soon.

At first, I didn’t really intend to take these apart. But then I was showing somebody, and I dropped them. And then, I only had one side’s lighting left over… uh oh!

Get ready for some Beyond Unboxing, where I take these apart gratuitously in order to see what might have gone wrong with the wiring when they were dropped, and alongside, give a quick tour of consumer product design.

Here is the beginning of the presentation. It comes packed in a plain black, non-showy form-fitting zipper case. This is an alien concept to me, since I guess I’ve never owned “nice” headphones in my life until recently when I picked up a HyperX Cloud gaming headset secondhand, and it also had a case.

Inside the case, the headphone cable and boom mike live on the left, while an included USB micro-B cable for charging is on the right.

The unit by itself. Once again, I don’t claim to know anything about nice headphones. I assume they all have this many degrees of freedom!

I’m not sure if I am a fan of the sound yet. It’s quite “boomy”, reminding me of the times I tried some Beats by Dre – all bass and low end, and nothing spectacular elsewhere. I suppose it fits well with current pop and hip-hop music. Either way, it’s well known that I am a Hipster of the Nth Degree when it comes to music, so I explicitly absolve myself of any authority on this matter.

A closeup of the lighting effects. The LEDs are clearly white – just the plastic colored ring determines the color of the glow. My issue was that the right-hand side (as pictured, so “left ear) was very sporadic, like a connector was barely hanging on or something.

For those who haven’t seen these used, the headphones are passively powered via the cord like you’d expect – but the lighting and external speakers (in the ears) are battery-powered, hence it needs periodic charging.

Let’s start popping stuff apart. First, the earpads can easily be slipped off (I keep wanting to call them “ear poofs”, but they have a name):

This exposes four small screws to open the housings.

Use a small Phillips driver (I had a #1 – this seems to be correct) to open the housings.

Here’s what they look like on the inside. The left side has the audio input and microphone jacks. The signals travel to the other side which contains the amplifier and power supply board.

The signal input board is held in by two small screws. I also pulled out the spring clips which give the housings a bit of “detent” feel in their yokes (the forks they’re mounted to) – that’s how they stay in place if you fold them. There’s a small plastic plug that the spring clip mates with that pulls out easily. From there, the housing can be full removed…

..If you’re more careful than me. I tried to remove the housing entirely, but I misaliged the other side and broke off the other pin-like structure its mounted to. No consequence, but there will be more sloppy movement as a result. Being more careful instead of pulling harder probably could have avoided this. Alas, the difference between a hub motor and little plastic speakers.

Regardless if the housing comes off the yoke or not, the plastic accent ring and cap can be removed from the inside using four screws. Two of these are accessible only if the input board is removed.

Check out the LED ring. I plugged the board back in temporarily to show the lighting effect.

The LED board is smooth white on top and made of two pieces – the printed circuit board with the LEDs is mounted to the white ring, which is a light-diffusing plastic like what would be used on a LED backlight. This softens the glow and prevents you from seeing discrete LED dots.

A little prying and the printed circuit board comes off. The LEDs are a unique side-emitting package instead of the far more common top-emitting type.  The LEDs fire into the internal face of the light-diffusing plastic, causing the ring to glow very evenly.

This thing has become more hardcore than I had anticipated. I was thinking that there would be an easy way to change the color of the LEDs if needed. Not so much with these – they likely chose white since it can be slightly filtered by the color of the accent ring into any of their colors. Add to that the oddball package needed and your choices are limited.

The three components of the lighting accents… or Axents, if you will.

Moving to the larger board, the amplifier board – I damaged the battery connector trying to remove it. It’s held in place by a very one-way snap/detent, which I broke before getting the connector to back out. It still contacts fine however. Your experience may vary.

The other connectors are secured by a small amount of adhesive, but this comes off readily.

The amplifier board! I wish I could say something about its design, but it’s not a motor controller. I’ve not worked with audio ICs in the past, so unlike said motor controllers where I can tell you whether or not it’s worth using, the specific implementations of the ICs used are lost on me. All I know is it cannot flow 500 amps.

I played with searching for their datasheets, however, and in doing so I discovered that some of these are pretty damn obscure. As in, no English-language results worth following up on. I actually had better luck hopping on a Chinese search engine like Baidu. The vast majority of results regardless were trading websites, not manufacturer’s datasheets or similar, and they all claim ORIGINAL PART!!!! like it means something. It seems like a lot of these chips are genericized and made by many factories for myriad applications, so you just pick one off the cloud. The same phenomenon gave us Seg-things.

The major ICs listed, which I could track down anyway, are…

  • CSC8004 – SOIC-16 package, some kind of 2-channel amplifier. I could only find a datasheet for the 8002, but I assume the 8004 is just the 2 channel version of it.
  • TPA2017D2 – 20QFN package, a Class-D 2 channel amplifier. If I had to guess, this one drives the external ear speakers, since Class-Ds can push more power with less dissipation and the ear speakers do get quite loud.
  • SC51PS704 – an 8-bit microcontroller. Looks like one of many different 8051 clones – similar 8051 clones are used in a lot of Chinese e-bike controllers. So few pins are actually connected on it that I think it only handles button presses.
  • BT608M – this was the single hardest thing to find. There’s lots of places trying to sell it to me! When you start getting into places called “ICMiner” or “Ic-ic.com”, that’s when you part is obscure-ass. It’s also apparently a model of hospital bed, and Bluetooth-compatible speaker system. If I stopped searching early, I might have assumed it’s some kind of unimplemented Bluetooth hardware (but why even populate it then?). But I don’t think so – based on various side-channel mentions of it, such as this spammy blogpost, and this short title, I am led to believe it’s involved in the button-controlled volume for the ear speakers. If you can find this datasheet, you are better than me.
  • NJM2100 – a dual op-amp, SSOP-8 package.

Since these units are made in Taiwan and commissioned by a big company like Brookstone, I assume they have their entire network of Chinese parts traders which I realistically have no handle on at all.

The housing on the right-hand side contains a similarly shaped though not completely identical LED board, as well as a small battery in the hollow portion of the black cap.

 

The right side LED board taken apart. This one has more markings!

I temporarily hooked both back up to check for differences in light output and the patttern, but they function pretty much identically. By the way, as soon as you disconnect the battery, the system will not arm lights or external sound until you plug it into USB power at least once.

The ratings on the battery are obscured by a bit of rubber tape.

Scraping it off, you can see that the battery is 1.0Ah. Assuming you don’t crank the ear speakers at full tilt, this should last for several hours of using the lighting and ear speakers together. They claim 5 hours – I haven’t verified this yet, but some rough calculations – 3.7V * 1.0Ah is 3.7Wh nominal, of which 80% is typically available (assuming it lets you drain the battery to 20% SOC, divided by 5 hours gives an average usage of 0.6 watts. Plenty of sound for you and probably the people in your immediate vicinity.

None of this solved my lighting woes, though. The next step was to disassemble the headband to see how the signal cross from one side to another.

I’ll get this out of the way right now: I hate snap-fits. Hate everything about them, but they are the go-to these days for consumer products because of less parts cost (no hardware). But they’re generally one-way only – you try to dismantle them and they usually, you know, snap. Those that don’t just break off you can usually only get very limited assembly-disassembly cycles before they no longer hold.

That being said, the headband is held on by 18 terrifying snap-fits. Four are at the corners where the headband ends inside the little plastic bezels – pull those upwards (in the shown orientation). The headband itself has 10 snaps that pull towards the center of the loop:

And the method of transmission is revealed. A ribbon cable! Seemingly a somewhat fragile ribbon cable. I hooked the lighting back up to see if any joints here were loose. It seems like the very act of manhandling the ribbon cable area trying to undo the snap-fits fixed whatever the issue was, because now I had both sides of lighting again.

Okay then.

From website reviews, it seems like some times there are issues with one side completely losing functionality. I suspect an issue with either this ribbon cable (I also hate ribbon cables, but just a little less) or the interconnects between it and the left- and right-housings – tiny cables made of braided Litz wire which is enamel-coated. This strikes me as being rather fragile, though most audio signal cables I have seen are made of this wire.

A closeup of the ribbon cable. This is oriented with the inputsside to the right.

Alright, as long as I’ve gotten this far into it, let’s keep going and see what the ear speakers look like. To get to its mounting screws, there is a plastic cover which has two screws that needs to be removed. This piece is the “detent” surface for the headband adjustment, which generates the clicks you feel when you pull on it. It then slides up and away.

Three silver screws attach the ears. Two are directly accessible, the other one requires you to mash against the R+/R- connector pictures above a little bit.

Here is an ear!

After some prodding, I found that the bottom is held in by two small snaps which are easily released, but the top appears to be a plastic snap rivet which, predictably, snapped. Its wreckage can be seen at the top of the ear.

The ear speaker is a cute little 1″ driver encased a small bucket that is sealed with a ring that has some foam tape. The back of the bucket is open, but the ear is still a very small enclosure. The ear speakers sure sound like small speakers in a small plastic enclosure, like most Bluetooth speakers I’ve had the pleasure of experiencing – a ton of midrange, and not much else, muffled and tinny at the same time. An audiophile I am not.

The depth of the ear speaker.

The ear accents are constructed like the ones on the headphone housing, using side-emitting LEDs pointed into light-diffusing material. The blue speaker icon is a separate piece and easily removable.

I peeled back the rubber compound holding the LEDs to the diffuser. There’s only two LEDs here.

So there you have it! Now I have no clue how to put this thing back together! Hey Brookstone…

I hope you’ve enjoyed this tour of what a modern consumer electronics product basically looks like – lots of molded plastic, snap fits, and housing little printed circuit boards. I feel like they still have a few little quality issues to overcome, but in general the amount of effort that was put into these was beyond what I expected.

That same level of effort also makes these things much harder to modify, as I had said at the beginning. Why would I be thinking of modifying them though!? That’s because of….

#Season2, Or: BattleBots, the Anime?!

I’ve been throwing around this false hashtag #weeabot on purpose for a little while now (false meaning I don’t ACTUALLY have a Twitter or Instagram or Tumblr account where tags actually, you know, matter – I consider Facenet hashtags to be kind of vestigial) on places like r/battlebots or the BB official pages. Anyways, what it embodies is my continued unstated, half-assed life goal to increase the intersection between engineering and anime. Put simply, there’s just not enough of it – at least in meaningful ways. Just like I like my science fiction rather high up on the hardness scale, I like my engineering depictions somewhat plausible. This in general never happens.

I also have a desire to offer counterpoint to the likes of Kantai Collection, which has (in my opinion) completely ruined the mecha musume genre. I like girls and machinery, and consequently girls with machinery, but Kancolle’s character designs essentially have nothing to do with the machinery. You don’t just weld battleship parts to a schoolgirl archetype and try to sell it to me. And the worst part is, it’s spawned endless look-alikes which have the same problem. It’s gotten so bad that even Toyota has started doing it. That’s truly when your genre jumps the shark*.

I can’t not say IMPOSSIBRU, sorry.

To matter the reason, if I don’t like anything on the market, I tend to make my own. RageBridge (and RageBridge 2) was a direct response to how much other motor controllers in the market segment sucked (AND STILL SUCK).

Now, an artist I am not, but luckily I have the help of the magical and talented Cynthia, who also brought you Arduino-chan as seen here last year. Besides returning again to help with the fabrication and electrical work for next generation Overhaul, she will also be creating team cosplays uniforms designs, as well as an “Overhaul character” in the vein of the mecha musume series and the, umm, Priusettes, which you loving and adoring fans may cosplay as in the live audience! One that doesn’t suck.

Here is a preview of things to come…

So there you have it. While I’ll be cranking on making OH2 hypothetically easier to service, faster, and more reliable (read: less fail), she will be making the brand. A robot TV show is about more than just the robots, after all. And especially in this day and age, you won’t really know what becomes popular due to the Internet Hype Machine ahead of time, so perhaps this is an exciting new direction. Hell, if all goes well, we’ll have a character for EVERY  #SEASNON2 entry – there will be surely something for everybody.

And lastly – so why did I feel the need to “mod” the Axent Wear? Because the shade of blue doesn’t match the new “team color” (and robot thematic color) for OH2, digital goddess and “That girl Charles has a sticker of on everything he owns” Hatsune Miku:

Of course it’s a Miku-van

It’s more of an aqua/cyan color, which involves a wavelength of LED that is not common at all, much less in sideshooter package. What I’ll probably just do is 3D print translucent-white accent rings (the currently blue parts) and coat them with something that is more aqua. (To my knowledge, nobody makes an already-translucent aqua/cyan 3D print filament).

Oh yeah, definitely expect the whole bot – however it ends up looking – to be plastered in character stickers and corresponding thematic paintwork. Since Miku is a copyrighted character, it will probably be whatever the OH2 character ends up as. I have a few places that can provide the necessary vinyl graphics.

And finally, for something vaguely robot related…

Those are rubber bumpies, similar to the ones used on OH1 but smaller and more numerous. Yum, bumpies. All shall be explained soon – I have over sixty design screenshots of OH2 to write up as soon as I’m more than 90% sure I won’t get kickb&4lyf for doing so.

#season2 #weeabot

*Not to shit on Toyota too hard for this campaign, since they did hire many different amateur artists to make the individual designs. It’s made the Prius about 2% less horrifying in my mind.

You Won’t Believe What the Chinese Did This Time! Beyond Unboxing of a 5-inch Brushless Hub Motor, and My Upcoming China Trip

Excuse the clickbait title, I’m practicing for my new career as a Buzzfeed blogger.

Just kidding.

A long time ago, I was a connoisseur of fine miniature hub motors. Okay, so even not-so-recently if you count the non-dedicated hub motors I’ve built, but overall, I like constructing my own custom motors for things since I get to tune them for the application. When I started building small EVs here at MIT in 2007 or so, it was a great way to motivate me to learn about how motors worked. Some (many) people have asked me why I didn’t make the hub motors my ‘research’ or thesis, which I could have, or why I didn’t start selling them, which I could also have started doing so. In fact, Chibikart’s motors were the direct result of getting some ‘pre-production’ prototypes made through mfg.com since I was entertaining the idea.

The real answer is that you couldn’t have gotten me to take it seriously enough to do either. I don’t like taking anything I do seriously (and anyone else taking it seriously is just unthinkable!). This makes me wonder some times why I’m doing such things as selling Ragebridges. I’m very weird among people I know in that I desperately want my ideas to be knocked off by the Chinese and marketed en-masse, because it means I don’t have to deal with it any more!

Hey, I hope some of them are following RageBridge 2’s development…

I regularly scout the furthest frontiers of shady Chinese component offerings (read: surfing Alibaba and Aliexpress) in the hopes that one day, some enterprising Chinese e-bike shop will awaken to the gospel of small hub motors and make the 5″ brushless size I made years ago. I’ve been watching the sizes creep down slowly. In around 2007, you couldn’t even really find brushless 8″ ones – they were mostly DC. In recent years, 6″ brushless ones have become available, but I haven’t seen then really used in anything – some times, I wonder how these Chinese shops get any business. Finally, about two or three months ago, the inevitable occurred. Someone posted a 5″ brushless direct-drive hub on AliExpress!

At the time, I wanted to pick up a few for dissection, but the high combined price including shipping put me off – I was probably coming straight off the Great Fuel Filter Debacle of Dragon*Con 2014 and couldn’t spare to drop $400 randomly. That changed a few weeks ago, when I finally decided that I had to find out what the Chinese managed to set up in my turf.

Shortly thereafter, I received a heavily-taped box with something solid tossing about inside. You never know with these sketchy Chinese vendors, so let’s see what’s inside. At worst, I’m okay with having some small cast iron billets, so there’s that.

Well, they’re definitely round. And have wires coming out of them. Once again, I’ve narrowed down the goods between either small land mines or motors!

I was impressed with the construction, to be honest. The fit and finish was decent – I personally think the days of the crude, out of round, chatter-mark filled Chinese machined product is over, unless you personally order it that way.

The endcaps are die cast aluminum, and the center shaft a fairly standard M12 thread on both sides with 10mm wide flats. A wire access hole runs down one side, measuring about 8mm diameter, so it doesn’t leave that much meat in the steel for taking loads, but the short distance you should be mounting these between forks makes it tolerable. I think one-side mounting these, such as on a Chibikart, will be unacceptable.

I very quickly cracked the casing apart by removing the radially-positioned M4 screws. I swear I’ve made this exact thing before.

I kid, of course. There’s several differences between my designs and this commoditized one. First, you have to split the motor apart to change a tire, whereas in my final few designs – piloted by Razermotor v3, Skatemotter, and Chibikart’s motors, a threaded ring clamps on the wheel, allowing it to be changeable. Yet I’ve also built motors where the endcaps have to come off to change the tire, such as the original Razermotors.

There’s upsides and downsides to both. You could argue that the lifetime of these components is not long enough to justify an easy way to remove the wheel, and I’ll totally buy that argument for these kinds of applications, but I chose to investigate how the wheel can be made easily removable just in case (or, if I ever get these strong enough to do burnouts with, of course).

Because of the lack of radial dimensional overhead needed to mount a threaded ring, they could afford to make the stator and magnets larger than I’ve been able to. I’ve never casted or molded my own tires, instead opting to stick to commercially available scooter tires, which tend to be tall in profile. As a result, I’ve been generally constrained in stator size in both diameter and width.

Not so with this. This is a full 80 x 30mm stator, with 18 poles instead of the usual 12 found in mine, and 20 magnets in the rotor. Getting custom stators made was one of the reasons I didn’t want to commit to production – they’re not single-packaged items in little ziploc bags; the tooling cost to set them up once was several thousand dollars – and that was a Chinese shop quote I got from mfg.com. Stamping 100,000 little tabs of steel and pressing them together still takes massive capital equipment.

(And no, casting iron-powder and resin material was not nearly a viable option for production.)

Three Hall sensor slots are carved into the laminations, spaced 120 electrical degrees. I stared at this for a little while, since by my general rule for Hall sensor spacing (360 electrical degrees / # of pole pairs / 3 phases), it should result in sensors that are 12 degrees apart for this 20-magnet motor. But these are visually more than that – I’d say more like 30 mechanical degrees apart.

I’m going to hazard a guess that they are actually spaced 24 degrees apart, which would mean each sensor is technically 240 electrical degrees apart – but all that does is wrap around the 360 degree mark, leaving you “120 degree” spaced sensors anyway. Still, that doesn’t look like 24-ish degrees.

The OD of the stator is 80mm even, and the ID of the magnet ring is only 80.6mm – leaving a 0.3mm airgap. Holy crap! This thing is tight. I’ve left 0.3mm airgaps before, such as in the Chibikart motors, but have generally favored 0.5mm for “Charles cares even less than the Chinese factory” tolerances.

Alright, enough gushing, time to do some Science™!

Some simple science for now. I just wanted a top speed figure, Kt, and line to line resistance – that’s all I really need to know for the time being.

This being Chinese e-Bike parts, the mini-Jasontroller I dug out of a cabinet was literally plug and play with the motor – it just needed to get to know the sensor arrangement, which it did after one full speed run. The throttle pins also plugged right in.

Gee, with service like this, why do I bother doing anything at all?!

Here’s what I collected.

  • The approximate “Kt”, or Nm/A, is 0.25
  • Therefore, the approximate “Kv”, more common in the electric vehicle vernacular, is 37 RPM/V
  • The line to line resistance is 0.21 ohms

I didn’t count the number of turns on the stator, since it’s both “Hobbyking’d” and well put together, but inverting my rough hub motor math (god that thing is old – maybe it’s time to rewrite it) yields “About 11 turns”, which is visually reasonable.

As can be seen, I take hub motors very seriously. In fact, I take all of engineering very seriously.

They can get away with having about 25-30% of the turns I have on my scooter motor because of the scaling laws of the motors. Increase the stator volume and you gain torque by dimension² – both larger radius AND longer length contribute to torque production, and more stator poles and magnet poles also divides down the mechanical speed of the motor relative to the electrical “speed” more, contributing to torque per amp.

Overall, if I start with my 36-turn, 70x20mm scooter motor with 12 poles/14 magnets and arrive at this thing, it works out closely.

Enough about the science – how does this thing ride? Ever since Kitmotter exploded (because it was made of wood) at Maker Faire 2013, Johnscooter has been sitting on a shelf. Well, I pulled it back out after getting these motors, and noticed that they could fit perfectly in between the rear forks!

However, since this motor had a fixed shaft with external threads, I had to turn the single-hole forks into “dropout” style forks by cutting a slot through to the mounting hole.

Well, that was certainly easy. Everything from here was, again, plug and play.

I’d say it looks quite good (minus the bundle of wires). The batteries needed a bit of cycling to wake back up.

Finally, it was time to con people into riding it.

The full-throttle pull is, of course, not that impressive, given that it is a small hub motor. However, it’s also not slouchy; certainly better than Kitmotter 0002 was. This is also with an unmodified mini-Jasontroller that’s putting out about 15 amps maximum, in a rather limited speed interior test. With an R/C wattmeter watching, it was never really pushing more than 200W into the motor. I recorded better results riding this thing home (I’ve forgotten how to ride a tiny-wheeled scooter) since it was able to get up to speed, pulling around 350W and hitting about 15mph (20kph) or so.

That’s as good as RazEr-original ever was! (Razer Rev is kind of a monster with my custom 3-way-Frankensteined 50mm wide stator, and is an exception to the dorky small scooter rule).

I’d say the manufacturer’s “250W” continuous rating is reasonable given this size of motor, and for added durability and thermal protection, I would infuse the windings with epoxy resin. Unlike my motors’ large aluminum shafts, the stator will have a hard time heat sinking through the steel shaft, so severe overdriving would be out of the question barring some case venting.

A bit of internet sleuthing led me to find some other vendors for this type of motor, which makes me wonder who actually makes them – I didn’t see any manufacturer’s markings at all on the inside. Here is one – UUMotor.

So what does this mean for you? Well, now with this resource, you guys can…

  1. Stop asking me about electric rollerblades.
  2. Stop asking me about that motorized suitcase / shopping cart / telepresence robot / self-folding Segway or the like.
  3. Make your own Chibikart 1! (Though you will have to modify the design for double-hung wheel support)
  4. Make your own 8 wheel drive Chibikart 1!
  5. Direct drive robot weapon? I wouldn’t go near the cast aluminum side plates, but certainly using the magnet rotor and stator in a custom design.

 

I do have half a mind to revive the RazerBlade project using this hardware and mini-Jasontrollers, but perhaps that is an exercise for one of you. For the time being, one of these motors will continue to live on Johnscooter (at least until I cook up a new Kitmotter design) and the other will be a lab curiosity. The maker universe has much to benefit from the gradual commoditization by the Chinese manufaturing cloud of once hard to access technologies, even if some individuals or companies might be impacted negatively. Hell, I should be pissed that someone else took my idea to fruition, but I purposefully did not take those actions myself, so I’m not going to complain.

So, when can I have my knockoff Ragebridges?!

Big Chuck’s Chinapalooza 2014

Speaking of China, I’m going to be in the ‘hood again in a week. The current lineup is:

  1. Shenzhen, 12/12 – 12/19. The manufacturing stronghold, I’m finally going to get to see what this place is all about. I have no agenda to pursue here, it is literally on my list because I have to see this place at least once while I’m gonna be in the area anyway. I’m just imagining a massive orbital cloud of knick-knacks, widgets, and tchotchkes here, and nobody may try to debunk said illusion in the comments section.
  2. Beijing, 12/20 – 12/27. The real reason I’m in China is for family visits, and unlike in the U.S. where I’m a southern good ol’boy (being born in South Carolina and raised in Georgia… seriously, I intend to unironically play the good ol’boy line when I run for President), I am a dirty 北京人 by heritage.
  3. Tokyo, 12/28 – 01/02. Okay, this is stretching the definition of “it’s in the area anyway” now, but I decided to turn a layover into another week visiting a place everyone has told me I need to go to. Expect me to be firmly glued to Akihabara.

I have no agenda as of the moment in SZ or Tokyo, so if you will be around, or know some places I should drop in on, or places to stay/crash, feel free to leave comments.

I’ll make a separate post with my contact/social media info in China once I get that together myself.

There will be melons.