Dragon*Con 2010: Überclocker is Done, Cold Arbor in the Mix, and the Nuclear Kitten 5.1 Blitz

In 2008, I had a Pre-Dragon*Con Botgasm. Last year, with only Überclocker, I didn’t have enough robots on deck to be finished in order to properly botgasm. Therefore, this year, I’m going to have to make up for it with now three bots that need completion!

Well, let me interrupt myself before I even start: Überclocker is done. I closed the bot up (well, minus battery cover, which I physically lost some time in the past 6 months) this afternoon and have been driving it around relentlessly trying to uncover hidden driveline mechanical flaws that could come and bite me in two weeks.  With Clocker asymptotically functional, I set it back up on the shelf and am now turning my attention to Cold Arbor…and a a revival of the Nuclear Kitten.

Überclocker

Two days ago, I left the FrankenWalt gearboxes about 95% finished. I made both gear cases, both sets of ring gears, both motor mounting plates, even both output stub-shafts… but only one output spindle. I just didn’t feel like machining the teeth off another gear that night.

But I returned later, having re-educated myself on the importance of finishing robots, and attacked that last remaining part.

Now here’s the reassembled drive base of the robot. I essentially took apart the entire outer metal structure, cleaned everything, then put it back together with the motors in place. Significant amounts of dirt, arena grunge, and metal chunks and flakes (!) made it into the corners of the robot, so as long as I had it in the open, I might as well clean it all out.

The outer chains have experienced some pretty serious stretching, and I expect that I’lll need to make a tensioner for them soon, lest they snag on something.

A couple more screw later, and the fork structure is remounted. While I had the fork apart, I took the time to make a few minor tune-ups and adjustments; mostly line items on the laundry list of upgrades that I keep intending to do (since they would technically take little time), but never get off my ass to do so. Such as:

…grinding the tips off the fork shaft set screws. These were formerly normal cup-pointed set screws, but I was dissatisfied with the way the cup point was gouging and digging into the flat on the (relatively) soft aluminum lifter shaft.

One way to resolve this is to just make a more legitimate power transmission medium, such as a keyed hub. But we can’t have that, since I’m lazy and therefore always vigilant for hackarounds. To obtain a wider contact surface with the aluminum shaft, I ground the tips off. Now, the contact circle is much closer to the 1/2″ screw diameter.

It won’t prevent gouging, but it should increase the shock torque handling ability of the fork a little more.

I kept the electronic bays intact, so dropping the Victors back in was a quick job. Since most of the wiring was on connectors, I didn’t have to rewire much from scratch.

Bonus: There is something very, very bad in the above picture. First one to name it wins….

… something. For what it’s worth, I fixed it.

A quick power-on confirms that the system is still functional.

Well, functional to the degree that I somehow managed to solder both drive motors in backwards.

Oh yeah – also on the list of stupid hacks I never get to is rearranging the actuator layout of the robot. Historically, Clocker has ran with the clamp actuator slung under the clamp arm itself. This location protected the motor itself from direct impact from opponents and also made the wiring path simple.

However, it severely constrained how far up the clamp could move, because the way the linkage is set up, the motor would just back itself into the aluminum fork hubs. This essentially limited Clocker to gripping opponents less than 8 inches tall.

I’ve toyed with the idea of flipping the actuator around so the motor is mounted above the clamp. This arrangement gains the bot another 2 or 3 inches of “grip” and also helps the leadscrew clear the truss that forms the forward portion of the clamp arm, which means the clamp can close to just over 1″ gap.

The only downside is that the motor is now open to damage. I’ll make an aluminum plate cover for it or something, but I think I’ll keep this setup.

All of this said and done, here’s some test driving video of Clocker, chasing Twitch, Jr. Everything goes well until the robots collide head on.

Hint: The robot that weighs three times as much and is essentially an uparmored Humvee in terms of structural durability fared better. Sorry Twitch :<

However, test driving revealed a critical flaw in the right side FrankenWalt – the first one I made. When I hard reverse planted Clocker into a corner, the right side completely lost coupling. I was completely unsure of what it could be, since the whole thing was made of Beast Fits and Loctite. As it turned out, the second stage ring gear’s press fit was in fact not a press fit at all. I probably only thought it was because I was pushing through burrs. The gear was actually pretty free to spin inside the gearcase. Solution: Drill down into the ring gear through the aluminum case just deep enough to insert a dowel pin. I used a #14  drill at 0.182″ diameter to make a gouge for a 3/16″ pin.

And by pin I mean lathe tool stock. Hey, it’s hardened steel and polished. Give me a break.

(The pin was cut flush with the gearbox surface and ground smooth, just for the record.)

It’s good that I found this out now and not, say, Monday morning of the con.

Overall, that does it for Clocker. I still need to cut out a replacement battery cover, since it being a nondescript cut-up-looking chunk of black plastic, it probably fell on the floor and got tossed during a shop sweep. At this point, Überclocker weighs 27 pounds – more than it did originally, but not surprising after the addition of the much bigger drive motors.

I’ll actually be making the replacement battery cover out of some very thick steel just to use up the last 3 pounds and push the robot’s CG back another millimeter.

cold arbor

Arbor has reached its own apex of entropy – after this point, I should be putting the robot back together more than taking it apart. Hopefully – I still haven’t addressed the drive motor issue yet. I kind of don’t want to make another two FrankenWalts, but I doubt I’ll be able to use the 24:1 gearboxes any more.

The designed parts of yesterweek have materialized into 1/4″ and 1/8″ aluminum plate. I managed to find a good deal on 2024 aluminum panels on eBay several weeks ago, and the 1/4″ parts here are made of that plate. Featured above are the new claws, the new saw motor mount, and new actuator mounting points for both front and rear actuators.

A little bit of sanding later and the rear actuator mount is in place. This is a very visible use of “thickness buffers” in the art and science of T-nutting. The original 1/4″ aluminum struts were 1.75″ apart, but the saw actuator is 2 inches. So between the back of the bot and the saw actuator, the spacing needed to widen up an eighth inch on each side and still had to hold T-nuts at the back.

So the solution is to stack two 1/8″ plates: one part which is purely a T-nut anchor, and another which is identical in that regard but also has the actuator mounting points – and make sure it’s on the outside of the stack.

The mounting plate is bolted to the thickness buffer plate using a handful of 6-32 cap screws. I thought about riveting it, but I couldn’t find our rivet gun.

The actuator drops in place like so. The only thing changing on this part of the robot is the leadscrew, which I’ll remake using a longer piece of Acme rod stock.

electr(on)ic mayhem

One of the downsides of possibly running two robots in the same class is that they might have to fight eachother in the tournament. If this happens, you either have to make sure you’re awesome at dual-joystick driving two robots at the same time, or have two radio transmitters.

I don’t. I only have my (outdated and obsolete) Spektrum DX6 radio. The same type that I ran back in 2007, when DSM1 was still in style. I have multiple BR6000 receivers for the transmitter, but only one Tx, and I don’t intend to get more obsolete equipment.

So what do I do? A real Spektrum rig is going to cost me another $2-300, which I could swing, but it would be kind of a waste of money given that term is about to start.

Luckily, like every other problem I have, Hobbyking has a solution.

On the left is my Spektrum DX6 (not even the i version). On the right is the HK-T6A 2.4Ghz 6 channel radio.

It costs all of $25, and includes a receiver. However, it also comes with no displays whatsoever (it’s the most bare-ass radio I’ve ever seen with more than 4 channels), no onboard switches for calibratoin, and the worst, buggiest we-made-this-with-a-trial-version-of-VB6 calibration software ever. Oh, and you can technically only get 5 of 6 channels working at any one time if you enable V-tail (& elevon, Delta wing, etc.) mixing for single-stick robot driving.

What it does have, though, is an established userbase and numerous “upgrade” hacks and replacement calibration software, such as Digital Radio.

The most important thing, though is that IT WORKS. For $25, I can deal with some shortcomings and rough edges. I’m tempted to tell Horizon Hobbies to just fuck off, but I also understand that HK is playing with alot of home field advantages, and would still spring for a real Spektrum rig any day.

The bottom line is that Arbor is getting its own radio for the con and for future events. This receiver setup has been determined to output “Bot-safe” signals i.e. none at all when the radio link is lost, so Arbor ought to still pass every failsafing test there is.

For what it’s worth, here’s a slightly junky shot of the inside. The difference for me between Chinese equipment and “established” well known manufacturers is that I never feel bad tearing into the former without even using it beforehand. Usually, I know that at least some kind of engineering has gone into the latter, and that me picking at it is only going to make things worse. So I satiate my curiosity on cheap parts and equipment.

The main MCU in the radio is an Intel 8051 knockoff that appears to share the same instruction set and pinout. Otherwise, the radio module itself is a bit more sophisticated, and features a 2.4G Taiwanese transceiver (Amicom A7105) and some kind of custom ASIC from Flysky (FS8004, which I can’t find a datasheet for anywhere).

My first mod to this radio is to make the left stick (throttle) spring-return to run the saw and clamp actuators. I didn’t have the correct part, but I chopped a spring lever out of a dead DX6 transmitter and sanded it down until it fit in the same slot. I also used the spring from the dead Tx.

There you have it – for $25, which is something like the cost of two burgers from Five Guys or how much Mountain Dew money I run through per week, you can get a 2.4Ghz 5.2387 channel radio that is essentially intereference-free, does not require channel crystal diggling, and has all the features you might need to control a basic robot. A word to robot n00bs: it did not use to be this easy. Get building.

nuclear kitten 5.1 surround sound edition

It’s back!

NK5 has been sitting idle on my robot shelf since Dragon*Con 2008 after it was first built. I’ve practically not looked at it, since I assumed it had taken significant damage at DC08 and was essentially not worth repairing.

After some egging by friends, I found out that I was pretty wrong.

Here’s the robot after I stripped everything down to prepare for rework. The overall appraisal:

  • The two drive gearboxes I thought were destroyed are actually working fine. No stripping or weird noises
  • The motor is functional, doesn’t have crunched bearings, or shorts in the windings. It just needs some magnets replaced.
  • The weapon pod swingarm is pretty heavily damaged and will need rebuilding to a beefier specification.
  • The 3S 1.3Ah lithium polymer battery is toast. D’oh.
  • Why the hell did I use 12 gauge wire on a beetleweight?

I’ve ordered replacement magnets and two replacement lithium packs from Hobbyking. Hopefully, with the magic of express shipping, they will arrive next week. NK fundamentally needs maybe two or three hours of work to be back to competition-spec.

How long will it actually last? I have no clue. It’s built to barely 2008 spec, and the brushless masculinity contest has grown in magnitude sine then by far. But, expect NK5.1 at Robot Microbattles on Sunday.

The Summer Build Season 2009

It has begun.

While I seem to be in “build season” mode year-round, it is during long breaks with little in the way of academic or life obligations that I get the most done. Last summer, I began work on LOLrioKart and built Überclocker, Pop Quiz 2, and Nuclear Kitten for Dragon*Con.

… which sort of sucked horribly for everything. Except NK, but only by about *this* much.

So what’s coming down the projectubes this summer?

Mostly the same thing. D*C is my biggest bot-celebration of the year, so once again the combat robot fleet takes high priority. Since there’s really just one robot that needs rebuilding, I also have the usual pile of small electric vehicle projects, of which only one is actually urgent.

Übercløcker RЭmiχ

I started redesigning Uberclocker some time in the fall of last year, hoping to get it done by Motorama 2009. Of course, due to scheduling concerns and logistics, this didn’t happen. But what that presented me with was the chance to put it away and not look at it for several months.

This is pivotal. The basic design has already been hashed out, but now I get to return to it after not thinking about it for a while. I am now in the process of analyzing the 3d model for any “impossible objects” that I might have included, or Really Bad Ideas. Such design flaws plagued the real life Uberclocker 1.0 at D*C last year.

Planned upgrades from 1.0? Well, besides EVERYTHING, the primary focus is on drivetrain reliability, center of gravity, and the upper clamp arm.

As a member of the pushybot school of combat robotic thought, I value maneuverability and driving above jawesometacular weaponry. Uberclocker 1.0 had a strange serpentine timing belt setup that seemed like a really awesome idea at 5 in the morning, but… wasn’t.

The robot also suffered from “centrally located center of gravity” syndrome at the event. While a CoG near the geometric centroid of the robot is good in practically every other case, the fact that the bot’s sole purpose was to grab another opponent and lift it off the ground meant that it just sort of faceplanted every time I attempted a lift. Not a very impressive show. The redesign lengthened the wheelbase of the bot, and selective weight reduction moved the CoG back about 4 inches, without additional ballast.

Oh, that’s right, Uberclocker 1.0 weighed in at an incredible 22.5 pounds out of 30 at the event. I’ll fix that too.

What I didn’t really get to (properly, anyway) in the redesign was the upper clamp arm. The previous arm was both weak and structurally unsound. While I think I took care of the “unsound”, I still have my doubts as to the clamp mechanism’s effectiveness.  In the past, clampbots have used pneumatics to actuate the upper half of the clamp. This is advantageous because a pneumatic actuator requires no “holding power”, unlike an electric motor, which has to be continually powered to produce torque. Pneumatics also have a certain amount of spring-back ability that a solidly coupled electric actuator doesn’t.

But robot-heaven forbid that I make Überclocker even more complicated by incorporating a pneumatics system for the one actuator that might need it. Thus, I’m still partial to a (spring-coupled) leadscrew-type mechanism, over the current design candidate’s motor-on-a-weird-gear. Except this time it won’t be driven by a beetleweight motor.

I intend to keep the “Chinese puzzle” frame, and will be refining it for ease of assembly. I devoted a few weeks to just fabricating the frame parts last time – no, never again. That’s what computer-controlled machine tools are for.

Pop Quiz 2√2

Incidentally, 2√2 is about 3. Not quite there, which also describes this planned rebuild of Pop Quiz 2. It’s not quite a complete conceptual revision, but there will be significant upgrades all around.

PQ2 is one of the (if not the) flattest 1lb class robots around that has an active weapon. It hits lower than some undercutters. The problem is that going the extra 1/8″ down in this current design meant that I had to ditch practically all the well-known, battle-proven parts – Sanyo gearmotors, SPEKTRUM 2.4ghz receivers, etc.

It was a fun thought experiment come to life, but the robot had a horrific reliability record, almost no reception due to the FM ground-band receiver, and a 5 minute chopped hack of a master power switch that ended up disintegrating after exactly 1 hit at D*C 2008. Pop Quiz had about 15 seconds in the arena.

Not cool. For ’09, I am INCREASING the height of the bot. Me, making a robot taller. How many times does THAT happen?

The robot height will be increased to about .400″, enough to cram in a set of real Sanyo micro gearmotors. The rest of the robot’s electrical system is sound, and so is the weapon motor. I’ll most likely end up reusing the electronics anyway, minus the cheesy little FM park flyer receiver. Instead, it will be swapped out with the latest Spektrum DSM offering, and I will run one transmitter between all the robots.

There’s no current virtual model for PQ2.8284171, but just imagine the current bot 0.025″ thicker.

Nuclear Kitten 5.1 Digital Surround Sound Edition

I’m actually satisfied with the performance of one of my combat ‘bots for once. NK needs very minor rework to take another run at D*C. The weapon motor needs some magnet reglued, and the weapon pod pivot axle is slightly bent and needs to be made better anyway. Past that, I have a spare blade to replace the faceplant-into-steel-bumper bent blade.

The only point of concern with NK is the drivetrain. Despite having a mechanically isolated weapon, I’m still blowing drive gearboxes, just because the bot is that much more powerful. I might switch to something like the 50:1 Copal motors || redesign the motor mount || use softer wheels.

No frame changes are necessary, since the bot escaped D*C rather unscathed.

LOLrioKart

Since I discovered that the main battery pack was leaking voltage all over the place (somehow, through an eighth inch of rubber?), I stripped down the entire electrical system and tested all the batteries. It turns out that the steel casings of the cells are live, something which I’m fairly certain should never be the case. While it’s fairly common for the battery negative terminal to also be the casing, the errant voltages are always somewhere between 0 and 1 volts.

This case voltage doesn’t seem to have negatively affected the cells, but I’m fairly certain it’s the culprit behind stray frame voltages. Somehow.

The focus for LOLrioKart work will be the electrical system. I intend to complete and test the ginormoFET controller and possibly implement dynamic (or regenerative!) braking using the upper leg of the half-bridge. Mechanically, the kart is fine.

Well, except for the brakes, but they’ve always been undersized and insufficient.

Ultimately the goal is to run it for longer than 1 minute on all 54 volts, or the full pack voltage of whatever eventual power system I might come into. I’m heavily considering crating up LOLrioKart and shipping it down when Dragon*Con comes around, so I can drive it in the parade. This could possibly be the worst idea I have ever thought of.

Project RazEr

It’s been hanging on a utility hook since the last controller fire. Everything works and the batteries are still charged, so all I need is a BLDC motor controller. Since everything still technically “works”, I don’t intend to touch the scooter that much, if at all. Any work on it will be replacing the shell of the wheelmotor with something more substantial (and better engineered, and more reversably built).

Time to get crackin’.