Archive for April, 2014


Chibi-Mikuvan Intensifies: Mechanical and Electrical Updates

Apr 30, 2014 in Chibi-mikuvan

As the 2.007 Silly Gokart Race draws closer (by which I mean it’s this weekend), so does the completion of Chibi-Mikuvan. Since last week’s outer shell work, I’ve brought the frame to mechanical and electrical completion, and have tested it under power. Technically it’s now “internet-complete”, which is a term I defined to mean that a project is finished enough that the Internet wouldn’t know the difference. It’s like “internet famous”. Here’s the somewhat chronological recap, as usual – a few things didn’t happen in a purely consecutive fashion but it’s much easier presented that way.

While the layers of resins and paints and the like were slowly crosslinking, I returned to working on the drivetrain. I last left it in a state where the frame could roll around, but the motor wasn’t mounted to the angle grinder gearbox yet, nor did I make the adapter shaft for it. I had planned for the angle grinder gearbox shaft to be keyed and for the pinion gear itself to be broached, but that would have necessitated buying a 10mm bore bushing for a 1/8″ (or 3mm) keyway, which was also nonstandard. What? Hell, if I haven’t remembered to make or buy the bushing by now, it’s clearly never happening.

That same day when I pulled up the design files, I decided to abandon the keyed shaft and return to something I last did in 2005 with my old 12lber Trial Bot: a tapered shaft and matching tapered bore. Tapers can transmit power with full material contact instead of relying on several small, discrete fastening elements like a key or set screws. They can be the strongest coupling method per volume because of the full contact and least concentration of stress.

The idea would be to machine a certain taper into the gear, machine the same but slightly shorter taper into the shaft, and then mash it together with a fastening screw. I chose a taper angle that would be self-locking to prevent the screw from having to hold rotational torque – this implied a taper of less than 10 included degrees. The design constraint here was that it had to start at 10mm diameter, end at 12mm diameter, and do so in the space of 17mm, the size of the gear.

Well that turns out to be 6.75 degrees, so I just rolled with it.

Shown above is technically the finished product – the gear on a tapered bit cut into a 12mm piece of precision-ground shafting steel. On the other end is an 8mm reamed hole to fit the motor shaft. I then took this scrupulously machined shaft and repeatedly hacked it up with a Dremel to make the clamping slit…. precision!!!!

To make the taper, I decided to exercise Tinylathe. I set the compound to as close as 3.4 degrees (roughly half of 6.75 degrees) as I could, and busted out one of my old miniature carbide boring bars for the job. The pinion steel was tough, but clearly not hardened, so this step ended up being much easier than anticipated.

The angle grinder gearbox made axial alignment of the pinion easy, since by default it’s just rested against the bearing. Spiral bevel gears are supposed to be very high precision devices, but I’m not so sure about these.

After assembling and closing everything up, here’s what the gear drive looks like. The sprocket has a big notch milled into it to interface with the spindle wrench flats of the angle grinder gearbox. The big nut is just to keep it in place axially, and it will be replaced by a smaller, more mild-mannered nut.

The coupling to the motor is done by tightening a 12mm shaft collar over the split section of the adapter shaft. This is a method I’ve used many times when one shaft is larger than the other, and is very simple to implement – drill an axial hole, then slice with a Dremel (or more legitimately, a slitting saw)

With the drivetrain basically done, I began plotting what to do about the electrical system. I was going to just lay out the contactor deck salvaged from the Ford Fusion battery on a piece of plywood or hardboard and lay the other components next to it for starters. I decided, though, that the three contactors on that assembly were just totally overkill for the end goal – I have no reason to need a precharge contactor AND discrete battery positive AND ground isolating (battery negative) contactors. Really all I need is a single positive side contactor with the precharge system built in on it.

Once the stock contactor deck was out, I began getting creative with the packaging. It occurred to me that I had several 7.62 NATO ammo cans which fit very well in the rear box frame. This was a complete accident, but a satisfying one. The ammo can could fit all the components and keep them water and splash resistant, since every year at the New York Maker Faire, it somehow rains. I took a while to arrange the components in a manner which made sense.

I decided to pursue a vertical solution with two levels, keeping the big power on the bottom and the signal interfacing on top for easier access. This is, of course, all predicated on the reliability of the power components, the Hobbyking motor controller in particular. In the design above, though, it’s still not too hard to get out if needed.

I left a large gap on the right side, by the ammo can’s hinge, so I can put the Hella master cutoff switch in the area (it sticks down pretty far) and a fuse block on the outside to make the mandatory fuse easily accessible.

The white component in the design is an “isolated ground stud”. I elected to use this method instead of a large terminal or bus block because of the limited number of ground connections I needed – basically one big wire in, and one big wire out. I remembered using these in FIRST Robotics before the power distribution became all fancy and modular.

The ground stud itself is a custom 3d printed job using a Makerbot, with a broken Hella switch’s terminal inserted through the bottom as the stud.

The first step in processing the ammo case was to remove the handle to make way for the switch and fuse block. I drilled the spot welds out to remove the handle anchors. The cutouts for the Hella switch and fuse block were made with a Dremel cutting wheel.

The Hella switch is now installed along with the mini-ANL (or MIDI, depending on who you buy it from) fuse block. I designed some wire guide/grommet/panel mount things which are installed into their own cutouts on the sides. These were designed with three tiny holes which I could drill out to fit different wire and cable sizes. They’re split into two pieces so they can install over a wire I thread in first, instead of having to deal with pre-installation, which makes the whole system more flexible in case I change something. Remember, this was practically designed on the fly.

Laser cut MDF lower deck with power components installed.

I prepared some auxiliary components, including the 12V rail supply and the precharge resistor. The 12V supply is a chopped up 5V R/C BEC unit like eNanoHerpyBike’s – I have a pile of dozens of these things, so it’s easy to grab one and go. The primary 12V consumer will be the roughly 0.9 amps needed to supply the contactor coils, and a very small amount otherwise running logic and fans.

Installing the first deck now. In this design, I chose to have the DC/DC unit pull power from ahead of the precharge resistor. What this implies is that the 12V and logic systems are powered on as soon as the Hella switch is turned on, ensuring that the logic is in a deterministic state before the ESC wakes up – the precharge resistor causes a delay in its turn-on since the voltage fed to the ESC rises slowly. Subsequently, if the contactor is opened for any reason, the power to the  ESC is soft-killed while the logic power remains on.

The second deck contains a 2.007 Arduino breakout board and a terminal strip to make outside-world connections with. The 2.007 board is currently only being used for its Arduino Nano, though the breadboard opens the possibility of adding some more custom signal processing circuitry, if needed.

I cut out a MDF plate that closes of the bottom of the box in the rear portion of the frame. It has two slots to allow the use of a small ratchet strap to hold the entire thing down. Perfect fit!

Here’s a profile view of the go-kart side of things. Overall, the setup is fairly clean and all of the powertrain is confined to the rear.

And yeah, that chain needed tensioning. I ended up using a half-link (example) to shorten the chain just enough that the slotted mount of the rear bearing blocks were enough to take up the rest.

In this configuration, with a makeshift 7S lithium polymer battery jacked into the massive 150A Anderson powerpole connector, I rode it around to test the Trackstar controller‘s startup response. As with all sensorless R/C starts, it was jolty, but the controller is smart enough to slow down the open-loop forced commutation frequency if it detects a no-start (cogging or “pole slip”) condition, then try and ramp up from there. It’s clearly designed for ground applications.

With the very high gear ratio present in the system, it’s able to take off basically within half a second of applying throttle each time. If the motor lands in an unlucky spot, it does cog, but recovers quickly.

I do want to use the liquid cooling feature of the Aquastar motor, so I had to sequester a water pump and radiator from somewhere. Luckily, a MITERS member had a spare cooling rig from an old PowerMac G5. I would just need interconnecting tubing and a little jar as a reservoir.

Power Mac G5 liquid cooling pump pinout

It took me a great deal of Internet wandering and the sacrificing of one of the pumps to find out the pinout of this connector. So if you don’t get this information anywhere else, here is the pinout of the Power Mac G5 liquid cooling pumps, the kind with the 6-pin connector. Did I mention that this is the pinout of the Power Mac G5 liquid cooling pump with the 6 pin connector? By the way, this is the pinout of the Power Mac G5 liquid cooling pump with the 6 pin connector. I even added image descriptions to the image itself saying that. Google is about to delist me for black-hat SEO, I’m sure.

To turn the pump on, ON must be connected to the 12v rail. It’s a very quiet centrifugal type pump.

I put aside the pumps for the time being to finish the last bit of visual detailing for the outer shell. I’m not going to be fancy and add working tail lights (yet), so for the time being they’re patches of orange and red paint. I basically reused the “inverse stencil” method again, covering the area in masking tape and knifing away what was not needed using the drawn lines as a guide.

Here’s the taillight painted details with the first bumper sticker! Okay, Beantown, you win. Beantown Taqueria is the nemesis in my ongoing fight against obesity and heart disease, but a very delicious nemesis.

Moving back to the powertrain now, here is a set of shortened battery pack endcaps I machined. But wait! Wasn’t the battery going to occupy the entire floor area?

It was also going to weigh about 60+ pounds. I test rode the chassis while holding a 55 pound Class-D fire extinguisher, because I love being ironic and also because it was the most compact object to weigh that much. This was such that I could simulate the battery’s weight. Conclusion: The sensorless starting routine is getting really borderline.  Adding 60 pounds to the combined weight of me plus vehicle (about 70lb of vehicle and 150lb of me) is a 27% weight increase, and the gear ratio is no longer enough to guarantee starts!

Alright, so 1.0kWh of battery was going to be ridiculous. I decided to cut the battery to a third of its original size. In a PRS race scenario, I’ll have to run for at most 15 minutes between required pit-ins and driver change (in the endurance race format), so as long as the battery is quickly swappable, it should work fine. The new battery, 28.8v and 16Ah, will weigh only about 22 pounds.

Hence, I redesigned the battery caps to only hold 6 of the Ford Fusion modules, and mount by only two of the four mounting holes.

To make this battery, I started taking slices off the cake and rearranging the cells inside the module. Some of them needed to be flipped around in their casings, so the positive and negative terminals could face the correct way. I discovered that the rubber isolators that they put around the cells are designed to only fit in one way, so the casings could no longer close if I just flipped the cells. Those had to come off – they’re the rings to the right.

I reused the bus bars that came with the battery pack to make the interconnects. There are two modules in parallel per “cell group”, and 3 groups in series, to make 28.8V and 16Ah.

Here they are, stuffed into the endcaps as a test fit. There are some touches I have to add, such as, you know, output wires.

So this is the progress of Chibi-Mikuvan up until last night. I’m intending to have it running, maybe not liquid cooled, by Saturday’s 2.007 EV race. I also have half a mind to drive across the country to Bay Area Maker Faire (not driving it, mind you…) and enter in the first PRS race of the year.




Chibi-Mikuvan: Completing the Bodywork

Apr 21, 2014 in Chibi-mikuvan

Last time we visited Chibi-Mikuvan, it was still a mottled fleshy-pink blob of fiberglass, insulation foam, and microballoons. Over the past week, I went full artist and completed most of the paint and decal work that turns it into something vaguely resembling its larger namesake.

Corrections! I turned the pink blob of foam into something that looks truly diseased and disfigured.

This was taken after I already put one layer of primer on. I already knew that the fabric texture would show through because my layup was too dry – caused, it seems, by too much squeegeeing. I decided to not glaze or fill the entire thing and only focus on the really troublesome parts where the cloth looked basically unwetted (it was, but there was not nearly enough resin to fill the gaps). The primer was used more as a way to see where the true problem spots were. After the spot putty dried, I sanded it smooth and put on another coat of primer.

In retrospect, this was a bit of a bad idea. The spot fills with glazing putty looked great! after the paint, but everything else just looked so contrasting. If I were to spend much more time on this, I would have either microballooned or thinly Bondo’d the whole thing, to fill the texture, before any painting at all.

Oh well

After all the primer and spot putty wads dried, I went over everything manually with 220 grit sandpaper to smooth the high putty spots down. After that, it was time for several coats of white. This took about 2 days, because I decided to do everything accessible from the top, wait for that to dry, then paint the less-critical bottom edges.

With the white base coat dried, it was time to add the dark gray and black window detailing. I used an “inverse stencil” method here, which I am sure is a legitimate thing but I re-invented it in 5 minutes on a laser cutter. I basically cut the outline of the shape I wanted, masking-taped it to the location I needed…

…and very carefully trimmed out the original paper, leaving a masking tape outline. Then, it was easy to apply much more masking tape to close off the areas that had to remain white.

To give additional cover after I got far enough away from the masking tape edges, I just hung some spare poster paper down the sides.

The first window coat is a dark gray. I wanted to use a more pure black to highlight the actual windows, and the dark gray to form what is the blacked out portions in Mikuvan’s actual paintjob – which I called “starship” for the longest time, but it’s actually called raccoon. – _ – (Concept image by Cynthia, of giant mechanical RWBY scythe fame. It shows a window blackout continuation I want to do eventually)

The next day, after the dark gray coat dried, I repeated the same inverse-masking process to mark out the windows. I planned on only adding this detail to the windshield and front door areas.

When the window details were “dry to touch”, I moved the masking paper around a bit and repeated the inverse stenciling for the front bumper detail. I decided to make this a medium gray shade since it reflects the somewhat sun-faded color of Mikuvan’s front bumper.

The next day, it was time to peel the masking paper and tape off!

So my “dark gray” turned out to not differentiate well with the pure black under indoor lighting conditions. It’s more noticeable outdoors or under natural daylight. I could have gone lighter a shade or two with the gray and gotten the same point across. After a gloss clearcoat, the two colors might look even more alike.

Test fitting the body! At this point, it’s missing detail lines. I decided to hire this out to Brian Chan, Maker of Like, Everything, Man. The rationale was that if I tried to make “detail lines” they would for sure end up being detail squiggles. Brian’s artistic background means his hand is far, far more calibrated than mine. We chose to only do a couple of major panel lines to get the idea across.

The operation was over quickly. My only bodywork task left is to add the taillight detail, which is going to be only an orange, light silver-gray, and red patch. This version of the body will not have functioning lights – short of maybe an EL panel or two.

Chibi-Mikuvan is not impressed by your 2.00Gokart.

Notice the handlebar change between this picture and two ago. The body fitting told me that the big drop bars I got weren’t going to work at all : they were simply too huge. It restricted movement of the steering linkage, and the brake cables would run into my leg.

I went back to Cambridge Bicycle and had them yoink another junk handlebar from the pile – this time, it’s a plain U-shaped bar that was both narrower and did not curve back. This made it have way more upper body room. The brake handle position shown is likely the final one.

It also looks like antlers, or oni horns.

While my students were working on their vehicles on Friday, I popped out some more silly Shift-JIS emoticons out of the fridge magnet sheet. I plan to have a whole bunch of mix and matchable expressions, maybe for things like winning or losing or whatnot.

No, really, this was my whole motivation for building this entire thing. I swear.

The next post in this series will detail the extent of the mechanical work that’s occurred in parallel with the body shell. Finally, the Epic Inrunner has been mounted!

Chibi-Mikuvan: Adventures in Foam-Core Sandwich Composites

Apr 13, 2014 in Chibi-mikuvan

I would never make anything out of composites. There’s too much making of the part that makes the part that makes the part. I prefer to just make the part.

- Charles some time in 2011, probably not on this website but at least once in person with someone

Okay, okay, you win, 2014-charles. If this exact time last year you’d told me I would be a composites nerd today, I’d have left the room in a huff.

However, you could also have the said the same thing about becoming a van mechanic, or becoming a shady back-alley auto body man.

Welcome to Big Chuck’s Mobile Garage & Auto Body!

Seriously, there’s enough equipment back there to do everything short of rebuilding the engine on the side of the road, and that’s only for lack of parts.

Hell, if you told 2011-charles he’d end up becoming the very thing he loathed the most back then: a machine shop instructor…

Anyways, last time I left off, the two halves of the foam core were drying independently. The reason I had to split the core into two halves was because I mistakenly welded the axles 1 inch too far apart, necessitating a 1″ sliver inserted into the middle to make up the difference.

I used the hot wire cutter that I built in MITERS back in 2011 in anticipation of making Chuckranoplan 0005 (do not tell me that I’ll become a combination naval architect and aerospace engineer next year) and a MDF template to slice some 1″ thick foam up into the cross section of the sides. By this point, I’d gotten my own shipment of microballoons and epoxy, so I applied this patch the “correct” way with microballoon putty. This stuff beats the colloidal silica slime I used before, because it’s actually sandable – fairly easily. I used the heavier duty stuff because a bucket of it was easily accessible, but I see why it’s only used for very high strength areas, edges, etc.

I did a practice piece in the back first where the geometry was easiest.

I generally followed the procedures outlined in The Burt Rutan Book, since I had gotten a copy of it a while ago. This book was what ultimately threw me into this direction – my gripes with composite materials originated from witnessing people spend tons of time making molds and plugs just to produce a single part. The foam method seemed like a way to get to the end quickly, and if it’s good enough to, like, get in and fly yourself it surely must be good enough for this!

For this practice piece, I took no shortcuts and went ‘by the book’ as much as I could. That wouldn’t last long.

I tackled one of the broad sides next. To keep things as uniform as possible, I kept the outside faces as one large sheet of fabric. I laid an oversized rough-cut sheet on the surface, anchored it in a few places with some epoxy blobs, then trimmed to rough shape.

The front was done in the same fashion.

One thing I had trouble with consistently while “Rutaning it” was controlling how the fabric stretched and deformed. The first few square inches of contact with wet epoxy essentially determine how the rest of it will go on, and I found that I couldn’t really push one area in the direction I needed afterwards without having to pull from across on the other side or slowly work a wrinkle back towards the center and out the other side. This method clearly requires patience and methodicalness to get right.

The ideal shape of the rear inside would have been having the black edges roughly parallel to the sides. The edges seen are the ends of a long strip that I wrapped around the backside – the exterior is continuous, the inside is messy and ragged.

…so I said goodbye to the Way of Rutan, realized once and for all that this is in fact not going into space or even in the air slightly, and began slathering. In fact, if it ends up in the air even a little bit, we can assume something went terribly wrong.

Now I was on the interior, so I could reuse the scraps and cutoffs from the other faces. My tactic became laying the fabric out dry so I could have control over its shape, dabbing a few spots to anchor it, and then begin pouring on the epoxy-microballoon slurry, working it in like I would do to non-filled epoxy.

This inside right face is made from about 7 or 8 pieces, most of which were spent on the little concave wheel cutout in the front end. For the other side, I smartened up a lil’bit and cut a semicircle shape out of the cloth stock.

The process went by much, much faster after this. Here, the whole body has been covered in at least 1 layer of fiberglass. I decided to stop here, instead of trying to add layer 2 everywhere. I reinforced the corners and front outside edges where it will most likely bump into things with another layer only in those areas.

This whole adventure actually occurred through several non-consecutive days, so in between sessions, the layer of glass cured fully. To ensure good bonding at the intersection of cured and fresh, I returned to the recommended Rutanistani procedure of roughing up the zone of overlap with 220 grit sandpaper.

After a day of settling, it was time to start on the smoothing and sanding.

To finish the inside curves and radius portions of the wheel cutouts, I bought one of these…. fuzzy abrasive foamy wheel things (poly-abrasize wheel) that attach to a drill. This allowed me to grind off the edges of the cloth and make the area generally smoother.

I didn’t spend too much time on this portion since nobody’s going to be staring at it, but wanted to get rid of the stuff that was sticking up.

I did a first round of “orbital sander low-pass filtering” reveal the low spots and knock down some of the more prominent high spots where the glass fabric stops. The plan is to just fill every location the sander didn’t hit with some Bondo and call it a day.

One thing I wanted to take care of before reducing this problem to a known solved one (“Van bodywork”) was to make the mounting facilities for the silly Japanese style emoticons. As you might be aware, the whole existence of this project hinges on these silly emoticons.

I decided to try and make them out of ‘refrigerator magnet stock’ and have them be rearrangeable on a thin steel surface. Flexible fridge magnets are made of iron oxide powder mixed into a rubber backing. The idea is that the laser cutter can melt through the rubber and leave me with an arbitrary magnetic shape (even though the heat might demagnetize a small portion of the whole thing).

The steel stock shown here is common galvanized steel roofing flashing, for weatherproofing household rooftop HVAC implements. It forms and cuts very easily and is extremely, extremely sharp. I used to use aluminum flashing extensively in 1 and 3lb battlebots back in the day [when such robots could win anything].

Using a pipe and gentle hand pressure (Like, seriously, this stuff is sharp) I formed the flashing into the curve of the lower front side. I made it just a little tighter of a curve such that clamping the flashing down to the surface will cause it to flatten out fully and conform to the curve.

Here’s the extremely ad-hoc clamping configuration for the upper portion. The lower portion was being adhered to what was basically a smooth and flat surface, but I didn’t have a good way to clamp it.

I therefore decided to make the first attachment using E6000 contact cement (c.f. Goop and other ‘construction adhesive’ type products; the shit that reeks of brain damage). I painted a thin layer onto the metal, then slapped it into position and quickly peeled it back off. This created a layer of the cement on both fastening surfaces. I then came back 5 minutes later and slapped it on once more.

These contact cements count on the evaporation of the solvent to create a super tacky, microscopically porous surface that then instantly fuses to itself. Using it between two nonpermeous surfaces, such as the cured fiberglass and steel, means the solvent has to dry out substantially first, or it’ll never set (Guess who tried making a composite E6000 and aluminum flashing laminated frame for some of his first bots, and took apart the frame after the bot was destroyed and found that the center of the sheet never cured!)

Time for Stage 1 of Bondo. Shown here is the right side, which was a bit of a disaster because I made a cutting mistake that left the outer surface slightly concave, and tried to make it up during glass application with dry microballoon putty, but made it too wet so it just flowed and blobbed everywhere. D’oh. The biggest splotches of filler are therefore on this side. Otherwise, the only other major use location is where the steel flashing is bonded, since there’s some thickness to be made up.

After letting this cure for a few hours, I did another “low pass” sanding run. Upon the completion of this round, only small low spots and divots remained, which I stuffed a little bit more Bondo into. While it was curing, I turned my attention to the fridge magnet stock:


This stuff machines like thermite. Like, actually. I was fearing for the life of my lens, but luckily the air assist kept the flying molten iron balls away from anything important. Because the material is iron powder mixed into rubber, it sort of explodes when cut – the laser vaporized the rubber, and the high temperatures melt the iron powder into little droplets:

This is the end result. Not the cleanest cut, of course, but all the little balls fall out when you pop the piece out. I found through making a handful of these test pieces that there is indeed a demagnetized heat-affected zone close to the cut, so the less heat put into the part the better.

I therefore left the laser on a setting where it would penetrate maybe 75% through the thickness, then flexed the rest of the material out.

So with this operation successful…

I can stop now, right? This is all I came to see.

I knocked out the last few filler smears (one can be observed on the front left corner) with primarily manual sanding. The most versatile and flexible sanding block is still you holding a wad of sandpaper. Power sanding at this stage would have been too risky because I might get too zealous in one spot and go right through the Bondo and fiberglass. Nope. That didn’t happen at all. I swear.

After I was satisfied with the outward appearance of the body, I moved onto bonding the body mounting brackets. These were 3D printed over one of the nights when everything was being left to cure. They’re fairly thick and bulky brackets which hopefully will have enough attachment area to handle some bumps and impacts. Now it’s time to let this fully cure and come back in the morning to verify fit.

Once this is done, I’ll move onto priming and paintwork.

In the mean time, let’s return to mechanicals:

Check out that handlebar. I obtained this for free from Cambridge Bicycle after showing them what the hell I was building (MITERS and Cambridge Bikes go way back, too, which helps). However, as awesome as it is, I might have to ditch it for a smaller handlebar because it’s too huge. I do like having the ability to attach standard bike/scooter handle accessories like brake handles and throttles, so if I do let this go, it’ll only be for a custom-made one.

I’ll have to do a full ergonomics test once the shell and myself are both installed in their final positions.

The steering linkage is hooked up with 5/16-24 threaded rod. Unfortunately, one of them ended up having to go through the frame – I had to cut a 1/2″ deep notch in one part of the frame. I chose to do this rather than lower the center steering link further because it’s already pretty low – it would become the first thing to hit something I go over (ahead of the battery pack, anyhow…).

I intend to install more mechanical parts while paint dries in the near future. On deck to be completed in this realm include the following tasks:

  • Machining the 12mm brushless motor adaptor shaft for the gearbox
  • Machining the sprocket to fit the angle grinder gearbox output shaft
  • Slightly modifying the gearbox mount because the angle grinder box is a little bigger than my rough model on one end
  • Hooking up the brakes to the handlebar

After this, I’ll need to turn back to electrical system work, starting with remaking the battery pack endcaps – I have not observed any “95% scale” weirdness with this shell, so I can only assume that it was a fluke, or someone changed the setting back between my machining periods a few days in between?!