Deathblades: Next-day Shipping Edition

I was able to hop onto a lab parts order early yesterday and throw in some force sensitive resistors and prototyping miscellanea. Thanks to the miracle that is modern supply chains and logistics, I had them on my desk in less than 24 hours.

Now, if only Advanced Circuits could finish my Double DEC’er boards that fast. I mean, without costing a significant percentage of my undergraduate tuition.

Oh, speaking of the Double DECers, here’s the latest board iteration featuring discrete 3.3v and 5v regulators. The amount of power I wanted to draw from the 5v line was cresting the limit of the DECs’ onboard regulators, so I added one that runs directly off the battery input. Also, a power LED.

I figured it was safe to stop there for now.

And here’s (part of) the controller parts roster. On the left is a Lilypad Xbee holder and prototyping antiperfboard. Lilypads were designed to be used with wearable electronics, and I figured that the controller qualified as a piece of wearable electronics. These things are actually huge. They looked tiny and cute in the pictures, but are actually about 2 inches in diameter. I foresee no fitting problems, however.

I got four coin cell holders. The controller power will, for now, come from 2 CR2032s in series for a 6 volt power source, which will be regulated to 3.3 volts.

The XBee 2mm headers are for the Double DECers, so I don’t have to solder my poor XBees to the board.

Anyways, here’s How Shit Go Down™ with the FSRs.

Their resistance decays as 1/R with linearly increasing pressure. There is a very high (megohms) unloaded state, and a minimum force must be applied to enter the hyperbolic region. After a certain pressure is applied, the decay saturates at a steady value until you compress it out of existence. Actually, all this is in the datasheet. Why am I explaining it?

I elected to begin experimenting with the “buffered voltage divider” on p. 16. As fig. 9 illustrates, the voltage response is highly nonlinear near zero force. However, with a low load resistance (Rm), the logarithmic curve is approximately linear at higher forces.  And with a high parallel resistance inserted across the FSR, the Precipitous Voltage Cliff is smoothed out to a zero force intercept with a value of approximately (Rm /  Rparallel + Rm) * Vref.

I exaggerated this approximately linear curve even further by using a 1Kohm load resistor, which seems to put me on the edge of the FSR’s 1ma per cm² current tolerance. Next, I set up the op amp buffer as an adjustable noninverting amplifier (as seen in figure 10). Tuning the blue potentiometer effectively let me set the force slope.

Now I had a response that was kinda-sorta-not-really-but-close-enough linear within an adjustable force range. To supplement, I put a slow RC filter (t ~ 0.5 sec) on the output of the amplifier.

After having enough fun playing Squeeze the Resistor, I began to attach it to spots on the wrist plate for ergonomics testing.  The results:

  • Palm area: Good wrist bend force response, but had the unfortunate side effect of also responding when I opened my palm all the way. This was due to the way the sensor was oriented – a normal force could come from either forcing the hand down through the wrist or pushing the palm out by uncurling the fingers.
  • Other side of same area: Very little response at all, because the force didn’t really go that way.
  • Behind the wrist on the flat portion of the plate. This is the 1st class lever equivalent of the first configuration, so it suffered from the same undesirable side effect. Pushing out with the palm also meant that this area of the plate was pushed upwards (with the main wrist strap as a fulcrum), triggering the sensor. Clearly, any response having to do with “opening of the hands” is bad, because that means if I’m trying to recover from an impending faceplant, it will just faceplant me harder.
  • Right under the wrist: Now this was actually promising. While the motion is reverse (i.e. now I pull up with my wrist), the side effect was eliminated – if not, it was a transient at most.

Crap, should have made the damn wire longer.

And so I actually settled with the original motion I was going to reserve for a brake or reverse mode. Now, something that can clearly solve this issue is having multiple FSRs such that different ones are triggered depending on hand position. The ability to distinguish between the open hand and limp hand with wrist pressure positions clearly mean the difference between go faster and oh shhhhh–.

However, that would require some software processing of the multiple signals, and I want to just start simple for now.

Here’s a short video illustrating wrist bend control. In the video, the control looks sensitive with respect to distance displaced, but that distance comes with substantial force applied against the wrist straps and plates. It’s actually quite easy to maintain a certain voltage position, and the “muscle twitch” response is well damped due to the filter.

The moving line scale is 1 volt per division, and the maximum output voltage is just under 3.2 volts. The system runs on a 3.3 volt bus (XBee native voltage) using the LMC6484 rail to rail I/O op-amp to take maximum advantage of the low voltage swings.

Next mission: Transmit this 0-3.3v signal to another board using the XBees in direct I/O bridge mode and decode & buffer the output to 0-5v.

Read more “Deathblades: Next-day Shipping Edition”

Karthook!

MITERS is the greatest thing that has ever happened to the world (or specifically just me), but while it has copious amounts of tools, test equipment, machinery, and an almost gratuitous amount of parts, it lacks space. Having been to other non-academically affiliated hackerspaces (such as Freeside Atlanta), I realize how outclassed we are in our capacity to host projects. Despite that, we’ve stacked up a whole bunch of “large”, generally vehicular contraptions, including the beloved LOLrioKart.

LOLrioKart takes up a good portion of floor space in the back half of the room and is occasionally used to store all my crap. It’s also a pain to move around because of its mass, and a pain to work on the electricals because they are all very low to the ground. If I want to test the drivetrain, I had to lift the kart and balance it on a set of automotive jacks. Don’t even mention that time I had to swap the battery packs…

So for a while, I had wanted a lift or crane to suspend the kart from. I didn’t take the idea seriously until Spring term ended, when I started looking for options. I became partial to a ceiling-mounted hoist because of the ability to send the kart all the way to the top for storage and extra floor space.

The kart only weighs about 200 pounds empty, which is a essentially trivial load in the world of winches and cranes. MIT building N52 used to be a factory, and factories in the early 20th century were built to last forever. The ceilings are all solid concrete, more than a foot thick. Essentially, almost anything would have worked, and I briefly considered just gearing down a beefy DC motor instead of buying a specifically designed winch or hoist motor.

But as luck would have it, Craigslist produced a pristine example of an ATV winch for sale locally, so I quickly jumped on it.

This Master Lock (I thought they just sold locks, but I was wrong) unit seems to be a pretty standard offer in the world of cheap generic utility winches. It made some substellar sounds when loaded and the drum finish was pretty rough, but I’m going to assume that it won’t kill me. Too badly, anyway.

The mounting holes in the winch frame were located in a place where I couldn’t access them with a powered screw driving tool. They were designed to be mounted to brackets first, which are in turn mounted to your choice of stationary reference frame.

…so I had to devise my own. This 3/8″ aluminum plate was just hanging out in the cave of materials. I could probably have waterjetted any number of small robot parts from it, but hey.

The two large middle holes are countersunk on the other side to fit 5/16″-18 socket head cap screws. The six surrounding holes are countersunk to fit some 1/4″ flathead concrete bolts. MITERS had a large stock of “tapcon” style concrete screws (which do not use anchors), probably from back when we bolted stuff to the ceiling all the time.

Because bolting things to the ceiling isn’t exactly a precision machining activity, I used spraypaint and sprayed a pattern into the ceiling, using the mounting plate as a template.

The winch itself is mounted using two 5/16″-18 socket head cap screws and grade 8 nuts and washers. This should not be the first failure point.

A little while later…

I borrowed a hammerdrill and a 5/32″ concrete bit and went to town on the ceiling. Reportedly, the hammering noise was ungodly loud, even on the third floor. I guess that’s what happens when you bang on a solid concrete building.

I learned that a hammerdrill is best used not under intense drilling pressure, but rather under modest pressure. If you push too hard, you dampen the chiseling action and the effect is diminished. This was well reflected in me taking almost half a minute to drill the first hole – but the last only took 5 seconds.

Unfortunately, attempt #1 to mount the winch didn’t go well. I made the mistake of reading a different box of screws (which specified a 5/32″ drill). 1/4″ tapcon screws need a 3/16″ drill. The difference meant that I managed to shear off the screw halfway into the final depth.

Epic fail.

I quickly went back with a 3/16″ bit to expand the other holes, and the rest went well. Friends and cohorts spotted the high-altitude work and helped hold the 25 pound winch up while I drove in the screws.

But after much sweat, concrete dust, and loud construction noises…

FLYING LOLRIOKART

Well, at least I know my five-bolted rig can hold up 1 LOLrioKart. The only power supply strong enough to supply the current demand of the winch was a big Optima lead-acid battery.

Because this is a shady winch being held up by shady screws into shady century-old concrete, we started piling heavy things into the kart to see if we could find the maximum load. Helmets and face shields were aplenty during this exercise, because even if the kart was only 1″ off the ground during it, the falling 20-odd pounds of steel were a concern.

Things piled into the kart include two truck disc brakes (60 pounds), the lead acid battery (50 pounds), the Defibrillator (a.k.a the kart charger, 25 pounds), one brushless Etek (25 pounds), a huge linear power supply (25 pounds), and a milling vise (40 pounds). Powered lifts and interrupted drops were attempted to put force on the mounting, but it was solid. I think it’s proved itself.

Assuming I did install the screws correctly and that the concrete is not crumbly, each 1/4″ concrete screw is rated to a maximum of 1,100 pounds assuming a 1.5″ depth. There are five holding the plate to the ceiling for a cool ultimate tensile strength of 5,000 pounds. Even accounting for imperfections, the winch should stall long before the screws pull out. It’s still unlikely that I’ll ever allow anything more than the kart by itself to be hoisted, or items of similar weight, because it can get overhead and that can end badly.

Yup, it’s a hoverkart. Any questions?