Operation IDIocracy: So…. What Now?

What better way to light off 2022 than with another IDIocracy post? Really, getting the two turbos fitted up and mounted was the easy part. There’s a whole bunch of other things going on that I had to dynamically learn about, usually by pretending to be a complete idiot on forums to assess what the general sentiment was. This is one of my favorite tactics to weaponize; after all, the best way to receive information on the internet is to be publicly and nitpickingly wrong about it.

In terms of support systems and concurrent mods to the engine, I still had to “complete” the turbos themselves by adding fittings and gaskets, add the oil drain and purge system, and figure out a solution for the positive crankcase ventilation valve. The PCV can no longer point into the intake manifold (as it’ll be under pressure), so it has to get routed somewhere. That and figure out the billion hoses that need to connect these things.

First things first, I’ll fully dress out and prepare the turbos. Remember when I said it seems like there should be a gasket between the two halves of the turbine side? I decided to pick some up (again, on eBay, only the finest motorsports performance wares!) and install them. Maybe you can get away with cranking the bolts tighter, but it didn’t feel good.

The little circular cutout is to seat the wastegate washer. It’s fairly on-size, and I could see misalignment here causing problems with the wastegate being able to shut. For insurance purposes, I filed the circle outwards just a little more.

Also arriving the same time was some bottom-tier canister air filters. I figured for now, as long as it wasn’t inhaling rocks or small animals, it was good enough. I can avoid drive testing through standing water for the time being, if need be!

I got all-metal distorted thread locknuts and M10 screws from McMaster. I also did some rummaging for hoses that are flexible but can take the charge air pressure (around 10-15 PSI), and found this duct hose which I’ll nickname slinkyhose. McMaster sells it as “High temperature flexible duct hose for fumes”

I got the impression you’re supposed use these nice but expensive silicone elbows and aluminum couplers everywhere. The number of turns I needed to make, though, would have meant the Nice Silicone Elbows were the single largest cost center of the project, not to mention I’ll have to cut so many joints I wonder if it would be worse than just having a slightly rippled hose.

In lieu of that, and without it actually needing to perform, I was like “eh, why not… whatever hose can take some pressure and heat wins”. And hence, slinkyhose arrived as a sample length.

Imagine the Inverted Johnson Fitting moment I then had when my friends went “Ooh, you’re using brake duct hose for boost?”

BRAKE. DUCT. HOSE.

Well damn, guess I learned something. Again, the most troublesome part of anything van related has consistently been “What do car guys call this thing?”

This hose isn’t like one of those flexible expanding hoses I got for Spool Bus intake duty. It has a steel spring inside, so it bends but will try to straighten out. It’ll need to be restrained, but can otherwise take any curve. The outside is then wound with fiberglass thread to keep it together and prevent it from inflating. The hose itself is made of fiberglass cloth that seems to be infused or co-molded with silicone.

Overall, I’d definitely trust the 25psi rating that McMaster gives it, just from looking at its construction. The hell you people need such hardcore hosiery for brake cooling ducts?

I was also receiving other odds and ends from eBay Racing & Development during this time. The Chinesium turbo world seems to have settled on AN fittings for their plug and play solutions, so I went ahead and got some -4 AN oil inlet flanges and -10 AN outlet flanges.

On the very left is a small Facet “clicker” type solenoid pump, that I bought off eBay as well. It will suck on the oil outlets on the turbos as the lowest point in the system and send the oil back upwards into the crankcase. This is necessary since I have both turbos mounted well below the oil level.

I was confident in the flow rate it could push, but what I wasn’t sure on was if it could handle the temperature of the post-turbo oil. One way to find out!

One substantial source of disagreement on the Internets seems to be what oil orifice size you need for these things, or whether or not you need a restrictor (which typically seems to be a 1/32″ or 0.8-1.0mm orifice). They’re Garrett knockoffs, so I once again wandered over to Garrett technical documents which said a 1.5-2mm orifice is typically enough. Yet there were plenty of forum vape bros who swore these needed “full” oil pressure. What the hell is “full” pressure?!

I learned that it’s ball bearing turbos which need a restrictor, as they’re more or less drip-fed oil, whereas sleeve bearings need oil pressure supplied directly to them. The way I understand fluid bearings to work, it’s the viscosity of the fluid doing most of the work once things are up and running anyway, and the flow rate is a function of the “ring size” – the clearance between the shaft and the bearing surface.

I figured “more is probably better” in this case and knocked these fittings from 1mm to 4mm. The aluminum these are made of is so soft I wonder how they were even able to hold onto them in the CNC machines.

Next up is some welding monstrosities. Remember how I said i had to kink the right side downpipe a little to give the turbo and transmission some more breathing room?

Well, I decided that I didn’t have the patience to do pie cuts, and I was out to experiment anyhoo. I tried to see if there was a way I could pie cut without pie cutting, like leaving the… pies connected.

The answer is yes, but keeping the cuts all aligned is difficult, you get sub-degree bends per cut, and there are big gaps to close at the place they all connect.

I learned the more legitimate version of this quick experiment is called “tiger cuts” or other stripey-animal cuts. I’m going to name this careless version the Raccoon Cut.

Okay, maybe I should have left the welds unground. A grinder I paint is the welder I…. something.

Whatever, I got the ~0.5″ of distal movement I wanted out of these cuts.

Gee, in comparison, the left turbo is positively wonderful. The “downpipe” stub is now firmly bolted in place with a stainless steel gasket and using the distorted thread locknuts.

The right hand side has a Point of Unserviceability due to the way I made the 90 degree turn. Can’t get a ratchet in on either side, so just have to bear it 60 degrees at a time with a regular wrench and hex key.

If I’d gotten the commoditized fitting, it has threads so I won’t need nuts on the other side.

And the completed terrorism that is the right side turbo assembly.

The next day, I got (finally) these 1/8 NPT tube bung fittings and decided to go ahead and install them. I’ll plug them for the first tests, but these will be where exhaust gas temperature probes live in the final product.

The last challenge was the wastegate actuators. I’d mentioned before that the stock mounts that these come with (pictured next to them) have them in another county, and I needed to come up with a “close tuck” solution.

They just have a 2 -bolt interface and are diaphragm-based, so they can take a fair amount of misalignment. This makes my job easy, as all I really have to do is make a single plate with their bolt pattern and one bolt hole for the compressor side clamp screws. I had some 1″ wide 1/8″ thick steel strip laying amount that was proper for this, so this was a quick markout and drilling job.

Here it is! I slightly bend the steel strip mount to point the rod in the somewhat correct direction, and can adjust its orientation slightly by swinging it on the compressor housing clamp screw

The actuator rods had to be substantially shortened. I did this just by cranking a M6x1.0 die as far as I cared to go, then cutting off the excess.

Now we have two completely dressed and ready turbos. The “stock” wastegate setting is allegedly 8 PSI, which is when the rod is barely preloaded over the wastegate arm.

Oh, yeah, it turns out that’s how you “Adjust” these. I thought they had little springs inside you could change, but that’s for nicer and more expensive ones. These have a fixed spring and you have to play with the preload – how far you have to tug it to sling the rod end over the wastegate arm is a direct function of how many pounds of force is needed to overcome the spring, which is related to the boost pressure by means of the area of the diaphragm.

Okay. “Not how I’d do it, but….” seems to be the movie poster quote of this whole project.

Viewed from the back towards the front, the left turbo is now mounted. Notice the oil like going up to the right – there is a oil channel plug here on the engine block, so I used a tee fitting here which will also serve the other side.

And the right side with the Terror Pipe is in. This is pre-tightening, so the turbo is still resting on the transmission. The post-tightening gap is about 1/2″ – good enough.

And here we have it. Turbos are mounted, oil is fed, and filters are on. The last steps of integration will be to pipe in the PCV system to one of these air filters (giving it some atmospheric pressure to near-suction) and work on the oil return hosiery!

2 thoughts on “Operation IDIocracy: So…. What Now?”

  1. Hey Charles,
    It just struck me that I’ve been visiting your site for over a decade now. Wow. Back then it was the common mode nut and hysterical current control that stuck in my mind :) Your basic explanation about inductance was the first time I understood that concept.
    Since then I have studied motor control software engineering, and have brought up (and blown up) many a motor controller. Biggest one was a 4 MW launch-type roller coaster (not blown up)
    Today I learned about distorted thread locknuts, tiger cuts, and VEN.
    After ten years, I’m still learning from you, and I’m still amused.
    Thanks.

  2. All hail Common Mode Nut. I’ve somehow saved about half a dozen consulting or work related projects with one of those…

Leave a Reply

Your email address will not be published. Required fields are marked *