A Different Kind of Chinese Motor Controller?! Adding Dynamic Braking to your Inexpensive Chinese VFD

Here at Big Chuck’s Robot Warehouse, we love our Chinese motor controllers. I some times think that at this point in life, I’ve become a kind of Chinese motor controller evolutionary biologist…. or at least like the Identifying Wood guy of underpowered gate drive amplifiers, I hope. Taking apart and examining motor controllers, which I’ve written up many times on this site in “Beyond Unboxing”,  is a large part of how I came to understand them, at least to the degree that Man can comprehend the transcendent nature of motor controllers.

Navigating the Pacific Rim of Chinese mass-market industrial products is not for the feint of heart – often times, products are sold over-rated and inaccurately advertised, and much of the knowledge base of using these products exists on hobbyist forums and message boards/email threads. This means anyone else outside of a circle of knowledge who tries to buy something and use it is often frustrated due to the lack of official documentation… and to find any good documentation often requires sifting through a forum thread or (heaven forbid) Github repository. That’s what I try to remedy whenever I cross paths with it, with some detailed writeup and explanation of what’s going on. Because at least that appears on a search engine result in a comprehensible fashion!

Today, we *gets out David Attenborough voice chipset* will be getting a closer look at a different species of Chinese motor controller. Rarely seen in the North American continent compared to its smaller, domesticated brethren, it is the majestic Giant Chinese VFD.

This one’s an adolescent male, with a 9/2016 date code. You can tell from his unadorned, angular ABS plastic case, compared to the more ornate and filleted females. He’s just begun to venture into the wild alone to expand his territory.

He stalks his prey, an aging Bridgeport J-head, from the safety of his preferred observation grounds, a nearby wall:

Okay, that’s enough, David. Also, lyrebirds are cool.

So why do I need a VFD? The shop has easily-obtainable 208V single-phase power which we had installed, as seen by the new junction box behind the mill. 208V is just missing the 3rd phase to become 3-phase, but that doesn’t exist in the vicinity and wasn’t going to be cheap to run. Hell, even if I had 3 phase, I’d still be getting a VFD anyway to have the additional running envelope and ability to change to arbitrary speeds. You mean keeping the Bridgeport in low gear and revving the motor to 13,000 RPM isn’t a good idea?

I did an initial sweep of the space of available Chinese VFDs back in January. Did you expect me to pay actual money for a real, working and supported product? Come on now, you know I’d rather jump into a pool of sharks. Chinese knockoff sharks!

As you can see, they all look kind of alike, and based on my brief research on DIY CNC forums and groups, they’re basically all the same genericized design. This is similar to other Chinese industrial products, including my favorite e-bike and R/C brushless controllers.

I have a rule called the “Law of Chinese Packaging Inertia” – if the Chinese product visually appears the same as a counterpart, it very likely is the same, or has trivial differences for marketing reasons. There’s been no better proof of this law than hoverboards seg-things, but it’s existed substantially in the past in the form of cordless drill motors for robots, the aforementioned e-bike controllers, and the like.

On eBay, there are numerous US-based resellers of the same products:

 

 

So I picked one which was severely overrated nominally for the motor it was to be running – a 3 HP (4kW) rated one, thereafter sorting by distance nearest and free shipping. You Only Line-start Once.

I figured I might as well err on the side of caution ratings-wise, since my other Chinese product rule is known as the “Harbor Freight Derating Factor”: derate by half if you intend to use it, and by 2/3rds if you’re standing under it. Vantruck weighs 3 tons. Have you seen how thin the metal is on a 3-ton Harbor Freight jackstand?! Don’t give me none of that shit…

The real reason, though, was because I picked the size originally for eventually powering the lathe, which has a pretty beefy spindle motor. I decided to outfit the mill first because it was a bit safer of a proposition to try something unknown on – there’s less rotating mass to bring to a halt.

Alright, my life is settling down a little after Motorama and the insurance & mechanics nonsense. Let’s wire up the mill!

 

Actually, speaking of “have you ever”…. have you ever seen inside a 1HP Bridgeport J-head “pancake motor”? I have actually never looked inside one until now, somehow, and it really is an axial-flux motor! For some reason I always mentally wrote it off as a very stubby conventional motor, but this makes so much more sense. Have a look at these photos! I didn’t take apart the motor since I “get it”, but that was a good trivia day.

 

I had to remove the drum switch (for manually powering in forward or reverse) and then drill an access hole in the 1/4″ thick cast iron junction box for a cable grip. This was when I discovered the previous operators used a 3-conductor service cord on a 3 phase motor with no ground. The ground was an extra piece of hookup wire mashed into the cable grip, electrical taped around the machine, and eventually into the 4-prong twist-lock plug. Well, at least it was grounded.

Wiring was pretty easy after that, and the instruction booklet which came with it was very Technical Chinglish but easily decypherable (and comparable to other more English manuals for VFDs).

Has anyone seen THE USE OF MANUAL???

These things will allow you to change a lot of parameters about the motor, and you can set the V/F line to have 2 slopes for more torque in certain operating regimes, etc. They call this “arbitrary” V/F curves, but no, it’s not really that. It came with a bunch of parameters set assume 50hz mains, which I changed to 60hz. Other parameters control what inputs the drive unit listens to – I hooked up an external potentiometer and told it to use the potentiometer to control the speed, as the unit DESPITE BEING ADVERTISED WITH ONE IN THE PHOTO didn’t come with a knob on the control board! See the very first photo above.

I cut the faceplate open to try and see if there was one hiding in there or something. Nope, missing. This will become a trend.

Most of the parameters I ended up leaving stock until I had a better feel for the system, since I’d not set up a VFD before. These inexpensive units are generally open-loop VFDs – they don’t have a tachometer input, though there seems to be an option in the settings… I’ll have to look a little more in detail.  They just bang out a frequency, and you can set how fast it increases that frequency for acceleration; if you set it too fast, you fall off the optimal slip region for maximum torque and your motor actually takes much longer to spin up (Induction motors require the supplied field frequency to be just a little faster than its rotational speed for torque production).

 

I call this the DOUBLE DANGLE

 

Slowing down was the hard part. Nominally, this thing had “braking”, and included terminals for a dynamic braking resistor, subway train style. I added one found in the bowels of MITERS – a 120 ohm, 50 watt unit. A little undersized, but it’s not like I’m stopping this motor every 10 seconds for a tool change.

Despite having the options selected, I couldn’t get it to actually perform any braking. I could either 1. set the ramp-down time to nearly as long as the machine would take to coast down by itself, or 2. just use “coasting stop” mode which was exactly the same damn thing because it just lets go of the output.

Attempting to set the spindown time faster simply resulted in the unit shutting down outputs and displaying an overvoltage error. Yes, it would make sense – when the motor regenerates power into the controller, it needs to go somewhere. In EV controllers, it’s back into the battery. I’ve never heard of a ‘grid tie VFD” for controlling machines before, though conceivable it could track the mains voltage to try and dump current back into the building, but why would you do that…. Or, you burn it off in a braking resistor.

Without any of those sinks of power, the voltage on the DC power rails of the VFD will spike upwards uncontrollably. It looks like this one will shut off at 400V on the DC power bus. I investigated a little more with stopping from different speeds, and it’s definitely correlated to the energy contained in the rotor and how fast I try to slow it down. So, it thinks it’s doing braking, but nothing is happening.

Well, I could leave it in coast mode, but what fun is not going down without a fight with a poorly documented Chinese product to the death?!

 

Step 1: Crack it open. Here’s what the power stage looks like. All the familiar trappings of a motor controller are there! Immediately, I can see that one of the gate drive optocouplers is missing…. probably the one that tugs on the braking IGBT.For a rundown on the symptoms I described here, read that article. It’s nice.

With some more research (read: forum threads… literally, read forum threads, like this one and this one) I found hints that a lot of these Inexpensive Chinese VFDs ship without any of the braking components populated. Given that this thing came with no potentiometer either, I’m entirely unsurprised. What I don’t get is what market they expect to sell to; a lot of them are advertised for process pumps (e.g. water pumps, blowers, oil pumps and the like) which I presume is a thing that doesn’t really need braking and doesn’t need constantly variable speed control, but maybe just 2 or 3 speeds and an on/off.

That’s another thing about Chinesium I can appreciate, even if I find it frustrating. Everything is stripped down and rat rodded to the point of doing only 1 thing, but it will probably do that 1 thing very well.

Staring at the P+ and PR terminals for the braking resistor under a backlight shows that there’s nothing connected to PR. It looks like there should be a wire jump…

Probably to here. The missing IGBT is connected via a wire jump to something. It’s functioning (based on the pinout of most IGBTs of this package) as a common-emitter  switch, one leg tied to ground and the other leg pulling on something. That something is supposed to be the DC rail (P+) through the braking resistor (between P+ and PR). My board seems to be a newer revision than the ones found on those threads, as a lot of the parts which were 8pin through-hole parts are now SMT parts, and the layout is different. Either way, from my investigation, 2 parts are missing: Q23, the bremschopper, and PC11, the optocoupled driver which tells it what to do.

So, if I haven’t reiterated, I fucking hate digging through forum threads to find the answer to my question. All y’all need to learn to keep a website. Read on if you want to add dynamic braking to your Inexpensive Chinese VFD!

I figured the parts used for this extra drive circuit should just be the same as the rest, so I ordered a pack of the IGBTs used on the board – FGH60N60SMD. The optocoupler driver TLP701AF didn’t have an exact match in-stock at Digi-Key, so I went for a similar equipped part number, TLP701HF.  The -AF part seems to have tighter switching time tolerances. In a single switch configuration here, I figured it doesn’t matter.

By the way, fully optocoupled drive is something I really, really want for Brushless Rage… but it takes up a whole lot of space compared to some driver ICs :(

Mounting the IGBT onto the power stage required some creativity. I cut up a spare RageBridge silicone insulation tab for it, and mounted it on the heat sink plate where it should go. Then I bent the legs up to the point where they should fall right into the empty solder eyes on the board. I decided to do it this way since trying to solder the IGBT to the board first wouldn’t have guaranteed it being able to lie down flat on the heat sink.

On the board itself, I made the wire jump from Q23 to the PR terminal.

And finally, I reflowed PC11, the optocoupler, onto the board.

And you know what?! That was it!

Man, whoever made this just couldn’t be motivated to put the extra 3 parts on it, eh? Guys, we saved like 80 cents! Yay!

Granted, again, if 99% of your users just drive their hydroponic pot farms with it, they’ll never need the braking feature and you might as well leave those parts out. For everything else, there’s my fucking MasterCard. Ugh.

Here’s a test video showing the braking in action. I cycle through the viewable parameters when the motor is running so you can see the DC bus spike up before the resistor does its job.

“DCB” is an added braking option where after the frequency gets low enough, it will just short the leads of the motor together. This provides extra braking power for speeds that are too low to generate any voltage to push across the braking resistor.

So there you have it. That’s literally the only thing stopping these controllers from being more useful running machinery! Now that I have additional parts, I’m going to purchase another one and wire up the lathe too.

One thought on “A Different Kind of Chinese Motor Controller?! Adding Dynamic Braking to your Inexpensive Chinese VFD”

  1. I’ve seen these Chinese inverters paired with air and water cooled spindles before and always wondered if they even worked. Not every industrial inverter comes with a brake transistor either, but at least you can tell from the part number and manual on them. Those that don’t (these days that would be the big ones or ones specifically designed for DC bus sharing) would have an external brake module that has a trip and reset point for the DC bus voltage.

    Also, I think the term you were for a grid tie VFD is called an Active Front End. It’s effectively another VFD running in reverse with some additional external filters and some really fancy firmware. Most standard VFDs just have a diode front end. Low cost ones use NTCs for inrush protection (beware cycling the mains too fast), mid cost units usually have a dedicated DC contactor to bypass a soft start resistor. High cost units have an active SCR bridge on the front end that may do some dump to line tricks but with high harmonics. Then the AFE units come in, as 2 parts, with IGBT front ends and a low harmonic system. I’ve never seen the last 2 options on anything but 3 phase inputs.

Comments are closed.