Motorama 2017: The Event Report; Or, How Not to Scale-Model Test Your BattleBots

Sunday, February 26th, 2017 @ 19:05 | Bots, Events, Überclocker 4

And we’re back! I must say, in a way, I miss the abject chaos (read: spinners) of the full-contact weight classes, but it is glaringly clear that I need to get my strategy back in shape. In all, this event was a good wake-up call for me if I want to play the BattleBots #season3 game seriously, but that’s for a later analysis. Here’s how things went down, starting with the finishing of Clocker a few days before.

One of my last to-dos was making spare armor wedges. I’d already waterjet-cut the plates, so they just needed to be cleaned and welded. These wedges represent a simplification of the design used on Overhaul that I would like to transfer. They’re simpler, reducing the number of facets and panels by half*,while also retaining the same lower-edge durability with a (higher mounted) gusset. However, they are missing the “Jersey barrier” double-angle front that Overhaul has, and this will be important later.

So there are four wedges – two are made from regular cold-roll mild steel, and the other two from 4mm AR500 plate. I’m really expecting to run the AR500 plate as primaries, and only ditch out to the mild if they get (somehow) demolished. I suspect there wouldn’t be much left of the bot if that were the case, but it’s good to have options! The 4mm plate one weighs several ounces more than the mild steel, owing to higher plate thickness (.125″ vs .140″) so I’ll definitely have to free up weight for it.

I jigged the whole thing up since it tabs together into itself and tack-welded the panels together using a TIG welder, before switching to the good ol’ spray-and-pray MIG welder to blend the outside seams together and drop a huge interior fillet into whatever edges I could on the inside. I am still the only person I know who tacks assemblies together using a TIG welder, and then switches to using a MIG welder. I write this off as me having zero patience for welding, but needing the initial assembly to be straight, so I do it with the precise near-zero-force application of a TIG welder.

*Note that Clocker doesn’t have forward- or side-facing wubbies like Overhaul, so if those features are being added back, it would increase the plate count, but still not to the point  where I had them for #season2

Free up weight? Where the hell else can I do that from!? It seems like Clocker’s been pretty well dieted, but a few weeks prior I had started thinking of do I really need semi-infinite drive power? in the form of possibly replacing the AXi motors. They work great, yes, but are definitely overpowered and therefore heavier than I need. I decided to swap to a set of 42mm SK3 outrunners, which would reduce me by around 4 ounces per motor, allowing me to use the AR500 wedges as the heaviest configuration. Power-wise, the SK3 outrunners would have been just fine. They also pair up with the pinions of the 4:1 P60 gearboxes from BaneBots I ordered (due to the higher Kv) and bolt to the motor plate with no modifications.  This is a great combo – I highly recommend it as a plug-and-play 30lber-scale brushless drive rig now.

The motors were basically the last thing to arrive before I had to leave, so I decided to hold off swapping the parts in until we got to the event.


The following image shows the totality of the glory of America:



On Thursday night, we packed Literally All the robots into vantruck, along with a sizeable amount of tools, support equipment, and other miscellanea. I planned to get there early-ish Friday to help set up and also to aid in Antweight & Fairyweight tournament logistics. Along with me were SawBlaze and Overhaul for display at the front of the audience section.

Sadly, this trip as-photographed did not happen, but that is an entire other story that has to be told separately. Long story short, the haulage minus SawBlaze and Overhaul were reshuffled into Mikuvan. This is a great story, I guarantee you (if you stalk me on the Internet, you already know it, so no spoilers!)

Alright, so it’s like 2PM on Friday now when I get there and everything is horrible and nothing matters. Let’s swap the motors onto Clocker:

Boy, those ESCs – spares left over from Overhaul and Sadbot, Dlux 160A HV units – are now officially overkill too. That’s what happens when you make a parts-bin robot. With the motor reduction, I was able to make weight using the AR500 wedges. Also in the same disassembly service were the floor scrubber tires:


Here’s a better look at them. I liked how they handled in the test box – still just a little light on traction, but very predictable. I brought along the Forsch (black) 60A wheels also, but decided to run these first since the Forsch ones felt a little more stiff.

Fast forward to Saturday and….

I feel like I’m at some kind of  career fair or anime convention. The people-ocean density was staggering; this is the largest Motorama Robot Conflict historically, and the largest year-by-year growth (over 50%). A lot of new faces, probably 25% of builders, and also quite a few returning legends. It’s a good problem to have.

In the interest of not dying, the 3lbers (beetlewights) were basically running in a parallel event with an 8 foot arena just off screen to the left, with only large bots – 12lbers, 30lbers, and 30lb Sportsman’s – running in the big arena.  Given the sheer number of beetles, it was the only way!

What’s great is MassDestruction helped spawn several ‘newb-vets’ who cut (….blunted?) their teeth in the MassD arena over the course of the last year.  These are two of Alex Hattori‘s robots. At this time last year, he had a 30lber made of two steel bars welded to a cast iron pot, and since then he’s cleaned house at like, every MassD ever, I swear.



Some other remarkable bots forged at MassDestruction from guys who work at, uh, MarkForged. Crap, my sponsor is beating me at my own game! What do I do!?

Another one of my favorites return – this is Pitter Patter, a 30lb shuffler (actually 45lb in the weight class) which way back in the olden days of Motorama 2015 was the original design model for Overhaul 1′s shuffle drives, which were basically a direct knock of this thing! For this version, the saw got smaller, but the shufflers got way faster… like 3000 RPM fast. This thing was cookin’ it in the arena.

Basically, you’re not getting anywhere NEAR the whole story just from these few photos. I remember when robot tournaments were this big, from the momentum of the first run of BattleBots, and I hope I see the 2nd Great Awakening of robots progress further still.

Anyways, onto my matches! This is Glasgow Kiss.

Topologically, it’s a good mockup of the Cobalt match. This is okay too! I’d actually hoped for a vertical spinner opponent so I can practice my anticipated strategy of using the ünicorn. However, I’ll gladly try to practice my horizontal-fending tactics too. The high level plan is to come into his weapon tangentially using the AR500 wedges and bounce him around, ideally towards walls, and try to corral into corners. More or less the same plan as for when I fought Cobalt.

I mounted the ünicorn anyway in case it could be used – I wasn’t counting on trying to swipe the belt pulley, as it’s too far inwards.

So how did this match go? Uhhh…

Well that’s not very typical at all.

Let’s watch the match video to find out what happend!

Alright, so my strategy starts out working fairly well. I’d say about 0:30 is when things start going awry. While I get a few more good tangential shots in, Glasgow Kiss is able to get one or two shots in which climb up the wedges and take out the clamp actuator and main lift gear.

At 0:49 I make a pretty bad driving error and end up plowing directly into the blade, so the forks and clamp are pretty much done by then – you’ll see me raise them to try and keep them up and out of the way.

The last big connection throws both of us apart across the arena, and I’ve lost all drive power by now so I tap out.

What Andrew (driver of Glasgow Kiss) does well is pivot the bot on the blade axis – in part a consequence of it being so heavy – such that it’s hard to just ‘get around the back of’ or execute similar strategies. He does this several times to leak away from Clocker’s grasp succesfully, leaving me to chase while he spins back up.

If you watch closely, you can see Clocker has some maneuverability issues right away. One of them is the bot’s right side having a tendency to stop and not reverse, which means I missed a few in-place turns. This occurred to me as strange – I mentally wrote it off to the smaller brushless motors in the drive cogging on start, but it definitely didn’t occur in test box driving. The heat of the match kept me moving, though, and I elected to try and drive around the problem, exercising the tactics I outlined in how2brushless at the bottom.

So Clocker seemed to be in one piece still at the end. Time to appraise the damage:

Check out the gear carnage. This gear is made from 7075 aluminum. It’s a nice and rigid alloy, one of the strongest by tensile strength aluminums, but it’s really best used in bulk such as gearboxes or bearing blocks and the like, not in thin sections. The gear is fairly heavily webbed out for weight, so it cracked through readily instead of bending. A 6061 gear would have bent and I would have had a chance to sledgehammer it back to something resembling flat.


Glasgow Kiss machined off most of this corner here when I was turned around. I’ve thought about making plastic corner hoopy-jiggles before, but haven’t been compelled to yet. As a part of a comprehensive horizontal weapon defense strategy, it might be worthwhile to do for Clocker using some 1/4″ UHMW or a thinner spring steel.

D’oh. I think the cross-arena impact stripped all the #6-32 threads from the end of the gearbox, so I lost drive on this side. On the other side, the chain jumped between the drive sprocket and the rear wheel sprocket.

You know what was awesome though? The AR500 wedges, on both sides, are practically untouched. Lightly divoted, but they were still flat to the ground. I did write off two of the lower wubbles on each side which had some tearing damage beginning.

But you know what – this setup went head to head with one of the biggest 30lb weapons a dozen times and isn’t much worse for the wear. What it really showed me is that Clocker’s frame and armor is perhaps overly built for the weight class now that geometry is compensating up front for frame thickness.

By near complete accident I’d say, the ünicorn came THIS CLOSE to piking the pulley and belt.

Alright, it’s time to fix everything up. Both sides of the bot had to be disassembled to replace the drive motor studs with longer ones. Since the P60 motor plate screws don’t go all the way through, there was some thread left which I could use with longer #6-32 bolts.

It looks like the frame was tweaked about 1/16″ in a parallelogram shape, from a similar corner hit on the rear right side (opposite the well-machined one), so the left side drive sprockets became offset enough to cause problems.

Getting the damaged lifter parts off was an adventure that took a long time. I’m now heavily rethinking the clamp collars on live shaft approach. It was fine in the Sportsman’s class where Clocker never took any real damage there, but with everything twanged up, there was hearty use of deadblow mallets, aluminum pusher tubes (to avoid marring the shaft), screwdrivers, etc.

What I couldn’t save were the clamp actuator and lift gear. I had thought about machining another lift gear the week before, but it remained just a thought. While I had a newly assembled and painted clamp arm ready, I didn’t bring spares for the clamp actuator. Without a backup clamp actuator – since Glasgow Kiss had basically wiped all the internals out also – I had to push everything back together in “spatula mode”, just with the lower forks and around 120 useful degrees of gear. Once again showing the difference between Sportsman’s and the full contact weight classes – just like in BattleBots, you should really be prepared to build 2.5 robots, one full set of spares and another for the things which break the most often.

So I delay my next match (and run down that delay as far as I can) to get spatula mode together. When I finally hustled into the arena, though, I discovered that Clocker could only spin in place or turn right. I clearly had wired one of the drive motors backwards, but what? Moving only channel 1 in my elevon-mixed (single-stick driving, basically) radio only caused the left side of the bot to move, with no response from the right side. However, it could obviously spin in place; without a motor being backwards, it means it could drive straight forward or backwards, but only turn right with 1 channel.

Without more time, I had to forfeit my match against Shaka, who, I will point out, somehow went 2/2 at this tournament using only forfeits. It won its matches by forfeit, but had endemic electronics problems which caused it also to lose by forfeit… I am told that in testing shortly after our non-match, it blew up.

Back in the pits, it took me a little more investigation to discover that my Hobbyking radio had somehow lost a mix. When you configure a radio for single-stick driving (or Delta Wing, Elevon, V-tail, etc. for aircraft), you assign mixes to tell channel outputs to listen to certain combinations of stick inputs. Here’s what a typical simple elevon mix looks like for my Hobbyking T6A-v2 transmitter:

There’s two mixes involved – one to tell Channel 1 to move with Channel 2, which on a typical radio is the vertical throw of the right-hand joystick. This means pushing forward on the stick sends the same signal to both outputs on the receiver, so the robot drives forward.

The other mix is to tell Channel 2 to move the opposite of Channel 1, which on a typical radio is the horizontal throw of the joystick. This means if you push stick right, one side of the bot moves forward and the other moves backwards, and is accomplished by setting the mix percentage to be -100 in both directions (do the opposite no matter which direction the stick is moved)

For me, the latter mix – the one outlined in Miku Pink – was NOT responding, despite showing correctly! This meant moving Channel 1 resulted in no opposite motion, just the bot pulling right. This was exactly the behavior seen in the arena, and I would never have discovered it if I had not accidentally put a motor in backwards.

I said the maneuverability tics Clocker showed in its first match will come into play later. I’m now 99% sure that this issue affected the match, and I tried to dynamically drive through it since I try to avoid stationary directional changes (turning in place) due to the brushless drive. A non-working Elevon mix will still kind of work if you move Channel 2 first – it will simply add and subtract Channel 1′s value from one side. In this case, it left the bot prone to pulling right, which is exactly what I saw.

How did I discover this was the problem? Well, I simply had it resend all the settings to the radio without touching a single one and it resolved itself. My radio literally lost a mix from its memory between Friday and Saturday for reasons unknown, even to the point where it convinced its software that the mix was still present.

I must say, I am not even mad. This is an impressive failure mode that I’ve literally never seen before, ever. Before anyone dishes on Hobbyking radios, though, I personally have owned a half-dozen (I keep accidentally giving them to newbies or random students and then getting another one) and also worked with hundreds back in my 2.007 days when they were the radio of choice for the class, and this is the first one I’ve ever seen DROP A SICK MIX like that.

With Clocker out of the tournament and the radio issue solved (!?), I waited for the 30lb rumble to join in on, where I basically overdrove the arm past the end of the gear immediately….. so I simply ran around as a wedge corralling bots in corners until the Vex sprockets’ teeth all came off!

My chain gliders probably wore  enough in that 5 minutes of crazy driving to make the chain skip on the sprocket (since it doesn’t have that great wrap angle), and the power of the brushless drive proceedd to machine the teeth off in short order. Ah well – it was a great rumble anyway. At one point I had every bot except Translationally Inconsistent, who kept slithering away sideways, piled in one corner.

Once I find a good video of it, I shall update the post to include it.

What’s great to see is that the 60A wheels hardly wore. Obviously this is both good and bad, since it means I could have traded hardness for more traction. For the 30lbers, I might go back to the 50A compound – Clocker in previous incarnations has run 50A wheels and I’ve been satisfied. Now is when pouring a few full-size wheels for Overhaul to try and drive around would be a next step.

We part with some shots of gourmet damage from one of Jamison’s loser’s bracket matches against Triggo. megatRON was upgraded to have an AR500 impactor disc on the end instead of a saw, and having that house brought down on you is capable of some serious damage:

this kills the triggo :c

Check out the 1/8″ heat-treated chromoly-steel shell rim also, from the same weapon:

This thing is not trivial; megatRON was actually one of my more feared potential matches because I have relatively weak top side defenses. Expect potentially interesting changes to Sawblaze for #season3 perhaps?!

Speaking of which, what takeaways for Overhaul do we have here besides the obvious bring a spare of the thing you don’t think you need spares of. Or three.

  • DAMN, THAT WAS A GOOD MATCH THOUGH. Honestly, if I had the choice of losing like that to Cobalt, versus the way I did via #setscrewghazi, I’d have picked the former in a hurry. I would have had enough spares to bring Overhaul back online quickly anyway, and it would have made for a much better show and much better test of the bot.
  • I’m highly satisfied with the AR500 wedges. So happy. It deflected the hits from Glasgow Kiss with ease, and also seems to have done its job of transferring the energy into the floor. AR500 has become a bit of a crack epidemic in robot fighting recently as more of it is readily sourced along with laser/waterjet services to handle it. It’s a nice alloy, really – heat treated to the high 40s Rockwell C already, and easy to weld with conventional consumables.
  • Good deflection is also a curse, because you aren’t in control of where the big beating-stick goes afterwards. I’m more convinced than ever – besides by this hit – that the double angle on the front of Overhaul’s pontoons is an absolute necessity. I designed without them for Clocker for simplicity and to see if I’m just being alarmist, but what the single slope let Glasgow Kiss do is deflect its own way upwards and clean house in the clamp actuator. I will need to think about how to  how to retain or improve this design for Overhaul, and to add it to Clocker.
  • I think it might be time for a scoop, for both Clocker and Overhaul. You know how Overhaul has the short arms that I used against Cobalt? Imagine those becoming vestigial and ending behind a angled steel plow which could nest in between the wedges on their inside slopes, making the front of the bot more contiguous. The remnants of this design can be seen in the forward-angled plate that resides on OH1′s forks.
  • It’s more clear than ever that a self-reinforcing geometry trumps material thickness outright. If scaled down directly without changes, Clocker would have 0.75″ thick frame rails, which it clearly doesn’t. It has 0.5″ thick, heavily-machined out side rails with 1/4″ thick cross-bracing plates, and that left the match against Glasgow Kiss needing a single screw extraction and maybe a hit from a good ol’ Engineering Hammer. What this actually means is I spent much of the 6 hour drive back from Harrisburg trying to rationalize that maybe I do need to have Overhaul’s frame remachined again. I’d be able to optimize for the geometry of the side rails. It would shed a lot of weight which can go into other systems I was running out of weight for, and really, based on how deeply Overhaul’s frame rails are pocketed, it’s almost useless to be made from 1.5″ thick stock. But UUUUUUUUGGGGGGGGGGHHHHHHHHHHHH.
  • I’m really, really itching to leave the clamp collars behind when it comes to power transmission to the forks. I think when it comes to fork improvements, just adding cross-bracing to Overhaul is enough, and I way more favor the 8-bolts-to-remove-an-arm setup on it right now for serviceability. I can replace a full set of arms and the clamp actuator on Overhaul faster than I could get the damaged forks off Clocker.

I would love the opportunity to test these hypotheses on a 30lb scale again in less than 1 year, especially because I (think) #season3 is still going down this year. Even if I can’t prove my hypotheses in short order, this was all good stuff to know!



  • Motorama 2017: The Event Report; Or, How Not to Scale-Model Test Your BattleBots
  • It’s Motorama 2017 Time! Überclocker Changes and Upgrades
  • 12 O’Clocker & MassDestruction 6: Where I Rebuild a Bot After the Event is Done
  • Shut Up about “Modern Technologies in Robot Fighting” Already: A Charles Editorial
  • The Chronicles of Vantruck 2: Not-Yet-Electric Boogaloo
  • Introducing Vantruck
  • Beyond Unboxing: The Harbor Freight Brushless & Lithium Extravaganza – 40V Lynxx Chainsaw
  • A New Beginning, Episode III: Revenge of the Charles
  • Franklin Institute 2016 – The Post-Event and Thoughts on #season3
  • Completing Überclocker 4 & The Leadup to Franklin Institute 2016

    2 Responses to “Motorama 2017: The Event Report; Or, How Not to Scale-Model Test Your BattleBots”

    1. FrankTheCat Says:

      I don’t stalk you online, you just happen to hang around the same communities that I also frequent…

      also, F

    2. Yippee Yea Yay Says:

      It’s been a while I’m following your blog. I still would like to see how you would build some crazy hoverboard (yes, I’m inspired by your works and I’m not that much into robots).

      Sadly my weight is 116 kilograms and I can’t rely those commercially available Chinese hoverboards rated 120 kg…

    Leave a Reply

    XHTML: You can use these tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

    Prove you are human by reading this resistor:
    0Ω+/- 5%





    Match the sliders on the left to each color band on the resistor.

    Click Here for a new resistor image.

    If you'd like to learn more, read about resistor color codes here.