The Summer Build Season 2009

It has begun.

While I seem to be in “build season” mode year-round, it is during long breaks with little in the way of academic or life obligations that I get the most done. Last summer, I began work on LOLrioKart and built Überclocker, Pop Quiz 2, and Nuclear Kitten for Dragon*Con.

… which sort of sucked horribly for everything. Except NK, but only by about *this* much.

So what’s coming down the projectubes this summer?

Mostly the same thing. D*C is my biggest bot-celebration of the year, so once again the combat robot fleet takes high priority. Since there’s really just one robot that needs rebuilding, I also have the usual pile of small electric vehicle projects, of which only one is actually urgent.

Übercløcker RЭmiχ

I started redesigning Uberclocker some time in the fall of last year, hoping to get it done by Motorama 2009. Of course, due to scheduling concerns and logistics, this didn’t happen. But what that presented me with was the chance to put it away and not look at it for several months.

This is pivotal. The basic design has already been hashed out, but now I get to return to it after not thinking about it for a while. I am now in the process of analyzing the 3d model for any “impossible objects” that I might have included, or Really Bad Ideas. Such design flaws plagued the real life Uberclocker 1.0 at D*C last year.

Planned upgrades from 1.0? Well, besides EVERYTHING, the primary focus is on drivetrain reliability, center of gravity, and the upper clamp arm.

As a member of the pushybot school of combat robotic thought, I value maneuverability and driving above jawesometacular weaponry. Uberclocker 1.0 had a strange serpentine timing belt setup that seemed like a really awesome idea at 5 in the morning, but… wasn’t.

The robot also suffered from “centrally located center of gravity” syndrome at the event. While a CoG near the geometric centroid of the robot is good in practically every other case, the fact that the bot’s sole purpose was to grab another opponent and lift it off the ground meant that it just sort of faceplanted every time I attempted a lift. Not a very impressive show. The redesign lengthened the wheelbase of the bot, and selective weight reduction moved the CoG back about 4 inches, without additional ballast.

Oh, that’s right, Uberclocker 1.0 weighed in at an incredible 22.5 pounds out of 30 at the event. I’ll fix that too.

What I didn’t really get to (properly, anyway) in the redesign was the upper clamp arm. The previous arm was both weak and structurally unsound. While I think I took care of the “unsound”, I still have my doubts as to the clamp mechanism’s effectiveness.  In the past, clampbots have used pneumatics to actuate the upper half of the clamp. This is advantageous because a pneumatic actuator requires no “holding power”, unlike an electric motor, which has to be continually powered to produce torque. Pneumatics also have a certain amount of spring-back ability that a solidly coupled electric actuator doesn’t.

But robot-heaven forbid that I make Überclocker even more complicated by incorporating a pneumatics system for the one actuator that might need it. Thus, I’m still partial to a (spring-coupled) leadscrew-type mechanism, over the current design candidate’s motor-on-a-weird-gear. Except this time it won’t be driven by a beetleweight motor.

I intend to keep the “Chinese puzzle” frame, and will be refining it for ease of assembly. I devoted a few weeks to just fabricating the frame parts last time – no, never again. That’s what computer-controlled machine tools are for.

Pop Quiz 2√2

Incidentally, 2√2 is about 3. Not quite there, which also describes this planned rebuild of Pop Quiz 2. It’s not quite a complete conceptual revision, but there will be significant upgrades all around.

PQ2 is one of the (if not the) flattest 1lb class robots around that has an active weapon. It hits lower than some undercutters. The problem is that going the extra 1/8″ down in this current design meant that I had to ditch practically all the well-known, battle-proven parts – Sanyo gearmotors, SPEKTRUM 2.4ghz receivers, etc.

It was a fun thought experiment come to life, but the robot had a horrific reliability record, almost no reception due to the FM ground-band receiver, and a 5 minute chopped hack of a master power switch that ended up disintegrating after exactly 1 hit at D*C 2008. Pop Quiz had about 15 seconds in the arena.

Not cool. For ’09, I am INCREASING the height of the bot. Me, making a robot taller. How many times does THAT happen?

The robot height will be increased to about .400″, enough to cram in a set of real Sanyo micro gearmotors. The rest of the robot’s electrical system is sound, and so is the weapon motor. I’ll most likely end up reusing the electronics anyway, minus the cheesy little FM park flyer receiver. Instead, it will be swapped out with the latest Spektrum DSM offering, and I will run one transmitter between all the robots.

There’s no current virtual model for PQ2.8284171, but just imagine the current bot 0.025″ thicker.

Nuclear Kitten 5.1 Digital Surround Sound Edition

I’m actually satisfied with the performance of one of my combat ‘bots for once. NK needs very minor rework to take another run at D*C. The weapon motor needs some magnet reglued, and the weapon pod pivot axle is slightly bent and needs to be made better anyway. Past that, I have a spare blade to replace the faceplant-into-steel-bumper bent blade.

The only point of concern with NK is the drivetrain. Despite having a mechanically isolated weapon, I’m still blowing drive gearboxes, just because the bot is that much more powerful. I might switch to something like the 50:1 Copal motors || redesign the motor mount || use softer wheels.

No frame changes are necessary, since the bot escaped D*C rather unscathed.

LOLrioKart

Since I discovered that the main battery pack was leaking voltage all over the place (somehow, through an eighth inch of rubber?), I stripped down the entire electrical system and tested all the batteries. It turns out that the steel casings of the cells are live, something which I’m fairly certain should never be the case. While it’s fairly common for the battery negative terminal to also be the casing, the errant voltages are always somewhere between 0 and 1 volts.

This case voltage doesn’t seem to have negatively affected the cells, but I’m fairly certain it’s the culprit behind stray frame voltages. Somehow.

The focus for LOLrioKart work will be the electrical system. I intend to complete and test the ginormoFET controller and possibly implement dynamic (or regenerative!) braking using the upper leg of the half-bridge. Mechanically, the kart is fine.

Well, except for the brakes, but they’ve always been undersized and insufficient.

Ultimately the goal is to run it for longer than 1 minute on all 54 volts, or the full pack voltage of whatever eventual power system I might come into. I’m heavily considering crating up LOLrioKart and shipping it down when Dragon*Con comes around, so I can drive it in the parade. This could possibly be the worst idea I have ever thought of.

Project RazEr

It’s been hanging on a utility hook since the last controller fire. Everything works and the batteries are still charged, so all I need is a BLDC motor controller. Since everything still technically “works”, I don’t intend to touch the scooter that much, if at all. Any work on it will be replacing the shell of the wheelmotor with something more substantial (and better engineered, and more reversably built).

Time to get crackin’.