Finishing Chibikart’s Steering

Wednesday, April 25th, 2012 @ 2:20 | Chibikart, Project Build Reports

Alright, so the past few days have been spent mostly waiting on AmazonSupply McMaster orders and watering my seedlings who are now taller than I am, so I haven’t been able to tool on Chibikart as much. I wanted to get the rear two motors mounted ASAP, but working on the braking mechanism has kept me from finalizing the design for the motor mounting blocks. Therefore, I’ve been focusing more on the front wheels and getting the steering hooked up.

First, though, what the mechanical braking scheme will look like:

While I’ve certainly built plenty of vehicles which featured nonexistent or substandard mechanical braking, it’s just a bad habit to get into. I’ve decided to repurpose the Razor scooter fender brakes that I have collected through parting out quite a few scooters (and other people having done the same). Chibikart’s wheels are conveniently the same size as the standard Razor A and A2 scooter, so it was just a matter of reduplicating the mounting pattern for the brake pivot (relative to the wheel axle) on my own structure.

The more difficult part was actuation. Initially I was going to weld a steel tab or something to the steel fender to use as a pull crank for a standard bike brake cable (with return force provided by the stock torsion spring of the scooter). However, I decided to try something a little different. The cable would instead be wrapped around an offset circular Delrin (or similar plastic) cam, so if I pull the cable, the cam swings down and pushes on the brake. The (rather stiff) torsion spring provides restoring force. This execution ended up being alot cleaner than the design which involved the mysterious welded bell crank. Also, sweet rear fenders.

Onto steering!

Yes, that’s a Kurt vise speed handle. I found it eBay for like 10 bucks, and it was essentially the correct size and everything!

The steering column itself is made from a section of 3/4″ OD, 0.040″ wall chromoly tubing, droppings from the FSAE racing team. I sandpaper-finished the tube on a lathe to take it to the proper slight undersize in order to fit into the steering bushings. A 3/4″ steel hex shaft cutoff was machined down to the ID of the tube, and is retained via a clamping shaft collar.

Chibikart’s steering is just a tower of shaft collars. The leftmost one is a bottom retaining collar and prevents the shaft from being pulled upwards. The one to the right has a built-in mounting flange that I used to attach my “Pitman arm”, the driving link in a standard linkage steering setup. I wish I had known about these things when making a certain other kart’s steering arm. That one was more metal than I think exists in this entire frame.

finishing those damned motors

Over the past few days, I also had a few stretches of 100% HARDCORE NONSTOP MOTOR WINDING. Finally knocked all those motors out… My hands are unhappy, but nowhere near as bad as when I had to wrestle 20 and 22 gauge solid – that stuff takes more tension to get right, where as much of the wire tension on this build was supplied by my little winding jig.

The motor torque constants are scribbled on their cans. As I finished each motor, I lathe-o-mometerd it to obtain its BEMF profile, and the Kt was estimated from that.

Back to steering. Here’s one of the “swivelly block axle anchoring doobobs” which I’m sure have a real name I cannot remember at the moment. They are simple chunks of milled aluminum with a 1/2″ hole through them. A 1/2″ steel pin with threaded ends fits in the hole, and it rides in the flanged R8 bearings. There is no torque transmission to the axle at all – it’s just a slip fit, since the linkage will push on the block directly. I installed around 0.1″ of shims in between the block and the R8 bearing, but I’ve found out that this is not enough – under the weight of a rider, the aluminum block still digs into the plates above and below it!

The reason seems to be that adding shims to the stack seems to only succeed in pushing the bearings out of their holes. I should have designed with the flanges on the inside to prevent this – it seems obvious now, but it’s definitely a manifestation of 5am Engineering Syndrome of which I am probably the patient-zero for.

The linkage itself is bone simple. Those chromate plated ends are control rod ball joints which are convenient because they have a right-angle stud ready to bolt into a linkage. The arms on the axle blocks themselves are “square shoulder plain rod ends“, screwed into the blocks and then locked in place with a jammed nut. The linkage proper is a section of 1/4″-28 B7 threaded rod, not even in tension-compression arrangement.

I like this linkage alot. It gets the point of steering linkages across while being simple to build. The downside is it that is not a true Ackermann style steering linkage – to get that kind of inside-wheel-turns-more behavior, the wheels must be positioned further out so the steering arms could be mounted inboard from the steering kingpin, a design tradeoff I wasn’t willing to make. It is approximately Ackermann for the extremes of its travel because the center linkage is shorter, causing one side to approach toggle quicker than the other.

What I learned while making this linkage was that nylock nuts are in fact nuts in a shell. I needed a non-locknut in 1/4″-28 really quick, and wasn’t sure where to find them. However, I had a bag of 1/4″-28 locknuts. I machined off the nylon part in hopes of finding a plain nut, but instead I discover it’s a threaded insert inside a formed steel shell!

Now, maybe not all nylocks are like that, but this was one of those “oh so that’s how they make it” moments.

No, I still haven’t figured out how they got the ball inside the ball joint.

After receiving my order of axle bolts, here’s one of the front wheels mounted!

I tried to sit on this 2-wheeled arrangment (2 front wheels) and tested the steering, which is when I discovered the scrubbing problem. I’m realizing that “more shims” isn’t the answer in this case. I’ll either have to flip the plates (bearings on the inside) and shave 1/16″ off each side of the blocks, which may or may not actually be possible, or perhaps just mill off a thin layer of everything but a small section in the center to make a virtual shim without changing the thickness of the block substantially.

Or just, you know, pour cutting fluid into it and let it sort itself out.

Next up on Chibikart, attaching the baseplate, making the last two wheel mounting blocks, and throwing some electrons at the thing!

 

Recently

  • Operation RESTORING BROWN Part III: An Electric Interlude
  • Operation RESTORING BROWN: Romance of the Rusty Roof Rail Repair
  • Operation: RESTORING BROWN: Vivisection of the Beast – the Summer of vantruck Begins;
  • Beyond Unboxing: Inside a Very Chinesium Mini MIG Welder
  • The Most Curious Story of Sadvan
  • How to Remedy Your Mitsubishi Delica’s Leaking Windshield: A Pictorial Guide; Or, Van Facility Improvements Late 2018 to Nowish
  • Operation RESOLUTE BROWN: Conquest of That Weird Idle Problem
  • The Long, Cold Winter of No Posting Ends: Awaken the sadbot2019
  • Dragon Con 2018: Postmodern Robotics Comes Home With a Vengeance
  • All-Vans Quality of Life Rollup – Mid 2018 to Now
  •  

    2 Responses to “Finishing Chibikart’s Steering”

    1. Max Says:

      Don’t be silly, everybody knows ball joints are made using quantum tunneling (but you need an infinite improbability drive to do it in an economically viable fashion – it’s one of their less well known static applications – a lathe / mill will not do).

      Chibikart is looking great though. I’m just not sure whether to yell “fire hydrant to starboard, ahoy!” when I look at the steering wheel or to keep trying to not imagine someone impaled on it at the first significantly sudden speed loss…

    2. Max Says:

      …although “chucks away!” sounds just about right in this case.