Archive for the 'Überclocker 4' Category


Motorama 2018: How Not to Scale Model Test Your BattleBots, The Remix

Mar 18, 2018 in Bots, Events, Overhaul 2, Überclocker 4

I had originally intended to go to Motorama 2018 solely for #vantruckjustice and to serve as an event volunteer and purveyor of Ragebridges and Brushless Rages. But with the announcement of Season 3, it became clear to me that I really should take the opportunity to get some practice driving in with 30-haul a.k.a. Überclocker v4.

Not only was my list of “things I didn’t like about Overhaul” extensively long, but based on my experiences after Franklin Institute and Moto 2017, I had several mental strategies against KE weapons I wanted to try out. Better do it on the small scale where it’s less expensive, right!?

So onto modifying Clocker!

One of my recurring themes in the past few event reports where I ran Überclocker has been the idea of reducing my wedge cross section against vertical drum and disc style spinners. I’ve had a theory for a long time now that broad armored wedges/plows are actually a liability against those kinds of weapons, despite being more effective against horizontals. There’s nothing better to confirm my theory besides Blacksmith vs Minotaur – in which Blacksmith actually does quite well against Minotaur until the latter manages to land a square hit upon the front of Blacksmith.

Essentially, a vertical weapon will tend to bend up your defenses by hitting it at a single point along its bottom edge, effectively making the length of the plow/wedge useless especially if the vertical weaponed bot has a feeder leg of some sort.

One countering strategy is going fully vertical with your defenses, like a crossing vertical bar of steel or something, making sure you hit the weapon before any feeders are able to touch you. Whoops! used this reasonable effectively against totally-not-Minotaur for quite a few hits.

That doesn’t quite work for me, though, because Clocker/Overhaul both have lifting forks.


Another strategy is minimizing your cross section ot exposure to those weapons by being extra pointy, giving them less of a chance to hit something important. This is also a strategy that I began moving towards with other ‘wedge fights’ – a broad surface is, again, vulnerable to any imperfections in not only itself but also the floor. I wanted to explore this strategy with what I call the “Wedges of Limited Liability” seen above – basically turning the armor pods into little shanky forks. I designed them to follow the profile of the existing wedges, out of the same 4mm-ish AR500 material.

These are a few ounces lighter apiece than the regular ones, which is going to mean a couple of pounds at the Overhaul scale. So it was interesting to begin thinking of the configurations I could get – freeing up a few pounds on Overhaul could let me add other attachments or additional armor (e.g. if I had to face Beta again, I’d spend the extra pounds on top armor).

While I was at it, I also redesigned the normal heavy wedges in the style of Overhaul. I had thought about ways to retain the double-angle feature but significantly reduce the number of pieces needed to construct it. Overhaul’s wedges were rather complex and made of 9 individual pieces each. I came up with an idea of making the second angled facet into a ‘backstop’ of sorts, attaching directly to the outside surfaces through extended tabs that also acted as gussets.

In essence, the above is what Overhaul’s new wedges will look like, but with some geometry placement changes. Clocker’s front is a lot more tapered than Overhaul’s, meaning the ‘backstop’ begins too far back to be really useful here to protect the gear from another Glasgow Kissing. I was more interested in the construction and their potential behavior towards deflecting  hits in general, rather than specifically trying to address last year’s weakness.

One change that has been on the docket since Franklin late last year was changing Clocker’s gearing. Using the lowest RPM/v rated NTM 42mm motors was still too much – I rarely exceeded 50% stick travel while driving, and the constant burnout mode the motors ran in during each match made fine control actually rather difficult. To give the bot more control over its own inertia, I was going to go to 11:1 P60s (from 4:1) but with a bump in motor Kv from 650 to 750. While this reduces Clocker’s nominal top speed drastically to only 10mph from like 20, it was going to mean more speed in a useful range. A lot of my strategy relies on being able to carefully control my approach and orientation to opponents, after all.

The same changes will be carrying through to Overhaul, but less drastically – I’m changing only the external motor sprockets, from 15 tooth to 12 tooth, moving the system reduction from 8:1 to more like 10:1, which is what Sadbot has been running in testing and whose maneuverability characteristics I like more. It will reduce Overhaul’s nominal top speed from 19mph to 15mph.

By the way, the NTM Propdrive 42mm series have a Mabuchi RS-700 size bolt pattern and a 5mm shaft, which mates with the Banebots P60 700-series motor blocks, not the 500 size.

Since I finally blew up the clamp collar joint at Franklin, I drilled the sheared bolts out and replaced them with a pin drive. The holes in the gear were bored out, and the “pins” in the shaft collar are actually shoulder screws with their heads milled off! I literally tightened shoulder screws into these holes and then clamped against the screws on the mill and blazed the heads off.

The shorter 4238 size motors, in combination with the 2-stage gearboxes, actually end up at the same length as before! This package is fairly potent and is a brushless 30lb drivetran of choice currently. The same two beta-version Brushless Rages still run the bot, dating now all the way back to Dragon Con 2017 and carrying the bot to victory at Franklin, then several demos at MassDestructions.

Fast forward a few days and an uneventful (!) vantrucking trip later, and here we are at the event:

So I didn’t get a chance to actually weld up the new heavy wedges – they’re shown sitting in a pile next to the bot, ready to become accessories. Since the only welder on site was a 115 v MIG welder powered by a 50 foot extension cord, my plan was basically to add some little barriers to the existing wedges in the form of strips cut from the new design.

Clocker’s first match was actually a “wedge fight” against the twin over-powered wedgebots of Boom Boom. This match was conceptually easy, but a little frustrating because Clocker kept digging into the wood floor. It was in fact too pokey and I could barely maneuver forwards. So it really wasn’t that good of a test of the Wedges of Limited Liability at all.

My next match was against Botceps, a pretty classic vertical eggbeater style spinner. Built pretty much like a BattleBotsIQ/NRL archetype, it had a very potent 50mm TPPower inrunner on the weapon. This was one of those “if I make a driving mistake, I’m kind of done” matches, so I had to be on my toes. I don’t have a video link of my match here at the moment, but should I discover one, I’ll add it in.

As you can see, I did end up making at least 1 driving error – at the beginning, a few seconds in where I missed a charge and Clocker went halfway across the arena. Luckily, the weapon motor fizzled out barely a minute in, but I did lose the tip off one of the forks and the left pointy-wedge.

The punt that send Clocker up and over also squished one of the outer rail mounting screws clean out of its hole.

At one point, I managed to execute my anti-vertical spinner strategy well, plunging the pointy-wedge straight under the weapon of Botceps – which managed to machine the entire row of rake teeth off it! The match ended with a serendipitous flip which put Botceps on its face (“doing the thing” in robotland) and without weapon torque, it was stuck in that position.

My next match was against Crippling Depression, a pretty innocuous-looking bot (by design) that actually puts a massive amount of power into the undercutter disc – two NTM 50-series motors, which is more motor than Glasgow Kiss. By the way, its builder Robert Cowan has a very detailed video series on a lot of engineering subjects, including full video reports of the build of CD. Basically if I were more keen about doing video versus text, I’d be like that! So go Like and Subscribe™

Clocker didn’t make it out of this match all that well, and I ended up tapping out.

The disc of CD hits very hard, and very low – lower than most of my side rails, so it polished off a lot of the bottom screw heads. It was also positioned just at the right height for Clocker to barely ride up on it, meaning I would actually lose a head to head pushing match. With brushless drive and weapons, we’re now squarely in the era of 30lbers with absolutely no compromises – CD and Clocker have identical drive motors and identical gearing!

The super low level of impact meant a lot of extra stress was put on the wedges here, and it never actually got to ride up to the point of hitting my welded barrier strips. In fact, the first few hits managed to bend down the corners of the left side wedge enough that I had some trouble driving afterwards due to it being hung up on the arena floor on occasion. It also caused the rubber shock mounts to shear off early, leaving me with fewer defensive options as the match wore on, until both the wedges came off and my only real strategy was to try and stay on him. You can see some of the resultant impacts causing a little bit of “Cobalting” on the right side (upper of image), but the middle tie plate kept this very limited and I didn’t even notice while servicing.

Eventually, the disc ended up shearing out a few sprocket teeth and jamming the drive on one side, so I just wiggled my way around until I decided I got the idea and should probably keep it repairable for the loser’s bracket.

This was about the moment I realized that disc weapons (and by extension, shell spinners and other lower-prominence weapons) were going to be a much different story than the archetypal big bar spinner in terms of how to fend them off and deflect their energy, and I decided Overhaul needed a full-span front plow style defense no matter what. Watching Jamison fight CD later on with megatRon confirmed this belief even more. I’m pretty sure if Clocker had a full span wedge, even a connector plate between the two halves, it would have gone differently.

I was losing wubbies at an alarming rate and did not have any more spares, so I had to source them from other builders. Clocker was short spare parts in general – I never got to waterjet additional frame parts or cast new wheels either, since the decision to go compete was made in very short order. This event was actually a great study in how far the design would go on attrition alone.

That was all for Saturday – on Sunday, my first match was against BEAM, a tiny Tombstone. A rookie bot that was still BRUSH-POWERED and with an EV Warrior motor at that! Basically running a classic car in battle, but it had done tremendously well up to this point.

Poor guy was probably being gunned after by every BattleBots competitor there, who saw him as “tombstone practice”. Honestly, so did I, because it could portend the results of #season3.

For this match, I was only able to get 4 wubbies per wedge, and changed out to another used wheel which didn’t have huge chunks gouged out of it. I also cut off the bent tips of the forks so they were a bit shorter, but now much less structural than they already weren’t to begin with. It is what it is, given the lack of preparation.

So how did Overhaul do against Tombstone?

That’s, uhh, not very typical, I’d like to make that point clear. Well, it seems like the front fell off again – much more epicly this time!

With as much handicap as the bot was facing, I sort of ‘drove for broke’ in this match and was determined to see how pure attrition would play out. I think I was actually quite happy with how I was able to deflect Beam repeatedly, even getting it to do The Tombstone Dance a few times.

I felt like I had Beam reasonably until roughly the 2 minute mark when one motor was knocked off internally causing it to lose drive one side. I then just kept pivoting to try and meet it with the wedges.  Also, I again kept the arms up to try and keep them out of the way of the bar, but ultimately they still ended up in Full Dab; these arms for Clocker were built quickly to Sportsmans’ class specs, so any sideways ping is going to bend them.

Near the end, though, one of my welded barriers came off due to lack of penetration from the event welder. At the last possible second, we got in a good head to head charge, and….

Clocker’s frame rails are made from 7075 aluminum, which is really a mistake. I already had the plate when it was being designed, so went for Easy first. 7075 is more brittle than 6061, and will crack instead of bending. You can see that clearly in the arm tower that took the brunt of the last hit. This is why Overhaul’s entire frame including the arm towers are 6061, and only the liftgear and clamp & actuator aluminum housing parts are 7075.

From watching videos in slow motion, Beam was able to climb up the de-barriered wedge much like Glasgow Kiss and firmly planted the bar into the side of the head, which of course shoved everything out the other side. The lift gear was also made of 7075, and I lost a chunk of it near the end – check out how clean the shatter line is. It’s barely bent at all along the rim and still sits quite flat on a table.

The ears were also obviously very suboptimal – they were re-printed, but weren’t bridged or braced and so had the same kind of failure when the bot landed upside-down with an opponent – they simply bent the aluminum clamp sides and rotated, making Clocker adorable and droopy for most of the match.

With the base still working fine after the drive motor was reattached, I entered the Sportsman’s rumble to run around like a dumbass. The P60 motor plates only have two screws, not four, so it was asking a lot to hang the entire drive motor off them. This is actually why Overhaul’s motor assemblies have bracing plates behind the motor endcap. Dumbassery was achieved until Pitter Patter sniped the power link with its sawblade.

So that’s Motorama 2018 for Überclocker. Going 2/2 against three heavy KE weapons with almost no spare parts was certainly more than I expected, which was more along the lines of instant vaporization. I think I confirmed about every fear I had for Overhaul, whose upgrades were almost done at this point otherwise, but now needed revisiting.

but what about the Implication?

I spent the joyride back from Motorama consolidating everything I learned while running Clocker and as well as watching other matches including the final few fights with megatRon, Beam, Cripping Depression, and others. As a fair percentage of the builders at Motorama were also building for #season3, we did some bonding at the event and over pizza dinner Saturday night to consider strategies for the “full size” bots.

In terms of the knowledge gained from testing, it’s a fairly established rule of thumb in the community (if you ask) that “designs don’t scale”. The sentiment is you can’t expect to scale up or down a design 1-for-1 in terms of material sizing and dimensions of weapons and motors and expect the same kind of behavior. It’s a consequence of a whole lot of square-cube laws: motor power scales by volume, kinetic energy stored in a spinning weapon by square of velocity but also implicitly square of weapon dimensions due to moment of inertia changes, material strength both by dimension cubed and linearly by yield strength, etc. It’s why historically speaking, a scaled up or down version of a successful design might perform horribly.

Essentially, the idea is that at the small-bot scale, the energy transferred and dissipated in a hit tends to be much less than the energy needed to permanently deform a material of a given strength and size. This is how 3D printed 1lb and 3lb bots fly around arenas and bounce off walls on a whim and keep going. It’s related to the concept of why you can drop an ant off a building and have it survive the fall, but not an elephant. As robot dimensions increase, the kinetic energies stored in weapons – whether spinners, or transferred in a powerful flipper connect, or in the form of a hammer tip – begin overtaking the ability of the material to elastically deform and dissipate energy, so you end up with a lot more things bent out of shape rather than two heavyweights suddenly reappearing at the other side of the arena.

I mentally call this idea the “robot Reynolds Number” when comparing designs of different sizes: to get the same physical behavior, a bigger robot has to be simultaneously more powerful yet built more rigidly. Consider it characterized conceptually as the ratio of average kinetic energy transferred per hit in a weight class to the material yield stress * volume used in your robot ( KE [J] / σᵧ [Pa] * volume [m³ ). The best example I can think of is probably how Big Ripto and Triggo (30lbers) can both bounce around arenas like beetleweights – but both robots are made of hardened steel when it comes to the bodies in contact, whereas plastics or even aluminum is likely to just deform in the same application; as well, they both cram about 4 to 5 kW of weapon motor power behind them, which is actually more than an order of magnitude from the typical beetleweight (3lbs).

What this means for me is that I have to be careful with interpreting the results of my matches. For instance, it’s highly unlikely that Overhaul will get sent flying end over end from a single spinner hit such as that from Botceps, but rather depending on what gets hit, I’d lose one of the wedges or have a pretty big chunk bitten out of the frame. The best-in-class KE weapons in BattleBots right now run right around 15-20 kW and around 50-100kJ. Going back to Blacksmith vs. Minotaur, you’d expect with strength-invariant scaling that Blacksmith would easily hit the box lights, but rather what happens is the frame/wedge deform and fasteners begin failing.  Also, in my match against Cobalt, my one good deflect was the end result not of being ultra-rigid, but backing the hit with the arena floor by virtue of the rubber-suspended wedges, which is obviously something I want to keep.

While the exact physics won’t carry over through scaling, concepts will. For example, I am fairly confident that

  • Weapons of low prominence, such as discs/drums/shells, are best kept away from you and interacted with lightly since they are less likely to grab entire portions of your bot at once, rather chipping away at it. This is best illustrated by how megatRon was able to keep Crippling Depression at bay with a single low front armor piece, whereas CD had more inroads to damaging Clocker’s separate armor pieces.
  • Weapons of high prominence, like the archetypical spinning bar or single-tooth style weapons, should be more readily deflected if possible, since they have more potential reach (i.e. far more “bite per tooth”) and less predictable reactions. You want them to go away from you as much as possible. I rather enjoyed a lot of the driving against Beam and making it do “the Tombstone dance”, and even the small welded barrier strip made a lot of difference until it failed.

Ultimately, I had to rethink Overhaul’s armor approach and how it interacts with the lifting forks.

  • I came away 1000% convinced it needs a Full frontalplow-like surface up front. It’ll be heavier – I will make weight for it somehow. One downside of separate wedges is only one set of rubber mounts takes all the load of an impact, and while my Cobalt flip was perfect, 99% of hits I take won’t be that perfect. A spanning plow will allow the mounts on both sides to take the load. Besides that, it will obviously decrease the amount of open corners Overhaul (and Clocker!) has. In fact, the plan was for the original Overhaul 1 to have such a thing, but we ran out of weight.
  • I had to retain the ability to lift independently of being able to deflect hits. Did you see me pin CD and Beam against the wall several times, but having to back off to try and get the forks underneath them – which in both cases had bent up beyond the point of usefulness? That’s how they escaped and the match continued. I need the ability to corral spinners against a wall but keep the arms tucked behind the plow, maybe exiting via a small cutout. Overhaul has a set of short arms which remain behind the wedge profile – imagine a cross piece in front of them connecting the two wedges.
  • Beyond just dealing with horizontal KE weapons, Overhaul needs a “Wedge of Limited Liability” of its own, which still supports the bot during a lift but otherwise takes the form of a skinny fork or tine so vertical weapons and things like flipper spatulas have less edges to find. I didn’t get to exercise the WLLs of Clocker this time against a vertical drumlet weapon like Other Disko, Mega Overload, etc. but I did like piking it under Botceps. Depending on the length of the tines, it could be effective on its own by being jammed under vertical spinners, for instance.
  • I need to learn to drive “dirtier”. What this means is foregoing my desire for continous showy and aggressive action – something I am used to in the 30lb Sportsman’s class – and instead maximizing my usage of pin times and arena-outs. Jamison is a more strategic and methodical driver me in this regard – he drives to win, whereas I tend to drive to shitpost. Compare his style when fighting CD (and other heavy weapons) versus mine. In the BB arena, survival is going to be key since we are more in the realm of throwing elephants off skyscrapers than insects. The NERC arena doesn’t really have facilities for arena-outs, but the BattleBots arena does, and I think it will be a key portion of my strategy. Bounce bots up and away, keep them corralled, and try to manipulate them behind the low walls and screw embankments.

Once I got back to the shop, it was time to refactor Overhaul’s design a little. Stay tuned for those updates!

Motorama 2017: The Event Report; Or, How Not to Scale-Model Test Your BattleBots

Feb 26, 2017 in Bots, Events, Überclocker 4

And we’re back! I must say, in a way, I miss the abject chaos (read: spinners) of the full-contact weight classes, but it is glaringly clear that I need to get my strategy back in shape. In all, this event was a good wake-up call for me if I want to play the BattleBots #season3 game seriously, but that’s for a later analysis. Here’s how things went down, starting with the finishing of Clocker a few days before.

One of my last to-dos was making spare armor wedges. I’d already waterjet-cut the plates, so they just needed to be cleaned and welded. These wedges represent a simplification of the design used on Overhaul that I would like to transfer. They’re simpler, reducing the number of facets and panels by half*,while also retaining the same lower-edge durability with a (higher mounted) gusset. However, they are missing the “Jersey barrier” double-angle front that Overhaul has, and this will be important later.

So there are four wedges – two are made from regular cold-roll mild steel, and the other two from 4mm AR500 plate. I’m really expecting to run the AR500 plate as primaries, and only ditch out to the mild if they get (somehow) demolished. I suspect there wouldn’t be much left of the bot if that were the case, but it’s good to have options! The 4mm plate one weighs several ounces more than the mild steel, owing to higher plate thickness (.125″ vs .140″) so I’ll definitely have to free up weight for it.

I jigged the whole thing up since it tabs together into itself and tack-welded the panels together using a TIG welder, before switching to the good ol’ spray-and-pray MIG welder to blend the outside seams together and drop a huge interior fillet into whatever edges I could on the inside. I am still the only person I know who tacks assemblies together using a TIG welder, and then switches to using a MIG welder. I write this off as me having zero patience for welding, but needing the initial assembly to be straight, so I do it with the precise near-zero-force application of a TIG welder.

*Note that Clocker doesn’t have forward- or side-facing wubbies like Overhaul, so if those features are being added back, it would increase the plate count, but still not to the point  where I had them for #season2

Free up weight? Where the hell else can I do that from!? It seems like Clocker’s been pretty well dieted, but a few weeks prior I had started thinking of do I really need semi-infinite drive power? in the form of possibly replacing the AXi motors. They work great, yes, but are definitely overpowered and therefore heavier than I need. I decided to swap to a set of 42mm SK3 outrunners, which would reduce me by around 4 ounces per motor, allowing me to use the AR500 wedges as the heaviest configuration. Power-wise, the SK3 outrunners would have been just fine. They also pair up with the pinions of the 4:1 P60 gearboxes from BaneBots I ordered (due to the higher Kv) and bolt to the motor plate with no modifications.  This is a great combo – I highly recommend it as a plug-and-play 30lber-scale brushless drive rig now.

The motors were basically the last thing to arrive before I had to leave, so I decided to hold off swapping the parts in until we got to the event.


The following image shows the totality of the glory of America:



On Thursday night, we packed Literally All the robots into vantruck, along with a sizeable amount of tools, support equipment, and other miscellanea. I planned to get there early-ish Friday to help set up and also to aid in Antweight & Fairyweight tournament logistics. Along with me were SawBlaze and Overhaul for display at the front of the audience section.

Sadly, this trip as-photographed did not happen, but that is an entire other story that has to be told separately. Long story short, the haulage minus SawBlaze and Overhaul were reshuffled into Mikuvan. This is a great story, I guarantee you (if you stalk me on the Internet, you already know it, so no spoilers!)

Alright, so it’s like 2PM on Friday now when I get there and everything is horrible and nothing matters. Let’s swap the motors onto Clocker:

Boy, those ESCs – spares left over from Overhaul and Sadbot, Dlux 160A HV units – are now officially overkill too. That’s what happens when you make a parts-bin robot. With the motor reduction, I was able to make weight using the AR500 wedges. Also in the same disassembly service were the floor scrubber tires:


Here’s a better look at them. I liked how they handled in the test box – still just a little light on traction, but very predictable. I brought along the Forsch (black) 60A wheels also, but decided to run these first since the Forsch ones felt a little more stiff.

Fast forward to Saturday and….

I feel like I’m at some kind of  career fair or anime convention. The people-ocean density was staggering; this is the largest Motorama Robot Conflict historically, and the largest year-by-year growth (over 50%). A lot of new faces, probably 25% of builders, and also quite a few returning legends. It’s a good problem to have.

In the interest of not dying, the 3lbers (beetlewights) were basically running in a parallel event with an 8 foot arena just off screen to the left, with only large bots – 12lbers, 30lbers, and 30lb Sportsman’s – running in the big arena.  Given the sheer number of beetles, it was the only way!

What’s great is MassDestruction helped spawn several ‘newb-vets’ who cut (….blunted?) their teeth in the MassD arena over the course of the last year.  These are two of Alex Hattori‘s robots. At this time last year, he had a 30lber made of two steel bars welded to a cast iron pot, and since then he’s cleaned house at like, every MassD ever, I swear.



Some other remarkable bots forged at MassDestruction from guys who work at, uh, MarkForged. Crap, my sponsor is beating me at my own game! What do I do!?

Another one of my favorites return – this is Pitter Patter, a 30lb shuffler (actually 45lb in the weight class) which way back in the olden days of Motorama 2015 was the original design model for Overhaul 1′s shuffle drives, which were basically a direct knock of this thing! For this version, the saw got smaller, but the shufflers got way faster… like 3000 RPM fast. This thing was cookin’ it in the arena.

Basically, you’re not getting anywhere NEAR the whole story just from these few photos. I remember when robot tournaments were this big, from the momentum of the first run of BattleBots, and I hope I see the 2nd Great Awakening of robots progress further still.

Anyways, onto my matches! This is Glasgow Kiss.

Topologically, it’s a good mockup of the Cobalt match. This is okay too! I’d actually hoped for a vertical spinner opponent so I can practice my anticipated strategy of using the ünicorn. However, I’ll gladly try to practice my horizontal-fending tactics too. The high level plan is to come into his weapon tangentially using the AR500 wedges and bounce him around, ideally towards walls, and try to corral into corners. More or less the same plan as for when I fought Cobalt.

I mounted the ünicorn anyway in case it could be used – I wasn’t counting on trying to swipe the belt pulley, as it’s too far inwards.

So how did this match go? Uhhh…

Well that’s not very typical at all.

Let’s watch the match video to find out what happend!

Alright, so my strategy starts out working fairly well. I’d say about 0:30 is when things start going awry. While I get a few more good tangential shots in, Glasgow Kiss is able to get one or two shots in which climb up the wedges and take out the clamp actuator and main lift gear.

At 0:49 I make a pretty bad driving error and end up plowing directly into the blade, so the forks and clamp are pretty much done by then – you’ll see me raise them to try and keep them up and out of the way.

The last big connection throws both of us apart across the arena, and I’ve lost all drive power by now so I tap out.

What Andrew (driver of Glasgow Kiss) does well is pivot the bot on the blade axis – in part a consequence of it being so heavy – such that it’s hard to just ‘get around the back of’ or execute similar strategies. He does this several times to leak away from Clocker’s grasp succesfully, leaving me to chase while he spins back up.

If you watch closely, you can see Clocker has some maneuverability issues right away. One of them is the bot’s right side having a tendency to stop and not reverse, which means I missed a few in-place turns. This occurred to me as strange – I mentally wrote it off to the smaller brushless motors in the drive cogging on start, but it definitely didn’t occur in test box driving. The heat of the match kept me moving, though, and I elected to try and drive around the problem, exercising the tactics I outlined in how2brushless at the bottom.

So Clocker seemed to be in one piece still at the end. Time to appraise the damage:

Check out the gear carnage. This gear is made from 7075 aluminum. It’s a nice and rigid alloy, one of the strongest by tensile strength aluminums, but it’s really best used in bulk such as gearboxes or bearing blocks and the like, not in thin sections. The gear is fairly heavily webbed out for weight, so it cracked through readily instead of bending. A 6061 gear would have bent and I would have had a chance to sledgehammer it back to something resembling flat.


Glasgow Kiss machined off most of this corner here when I was turned around. I’ve thought about making plastic corner hoopy-jiggles before, but haven’t been compelled to yet. As a part of a comprehensive horizontal weapon defense strategy, it might be worthwhile to do for Clocker using some 1/4″ UHMW or a thinner spring steel.

D’oh. I think the cross-arena impact stripped all the #6-32 threads from the end of the gearbox, so I lost drive on this side. On the other side, the chain jumped between the drive sprocket and the rear wheel sprocket.

You know what was awesome though? The AR500 wedges, on both sides, are practically untouched. Lightly divoted, but they were still flat to the ground. I did write off two of the lower wubbles on each side which had some tearing damage beginning.

But you know what – this setup went head to head with one of the biggest 30lb weapons a dozen times and isn’t much worse for the wear. What it really showed me is that Clocker’s frame and armor is perhaps overly built for the weight class now that geometry is compensating up front for frame thickness.

By near complete accident I’d say, the ünicorn came THIS CLOSE to piking the pulley and belt.

Alright, it’s time to fix everything up. Both sides of the bot had to be disassembled to replace the drive motor studs with longer ones. Since the P60 motor plate screws don’t go all the way through, there was some thread left which I could use with longer #6-32 bolts.

It looks like the frame was tweaked about 1/16″ in a parallelogram shape, from a similar corner hit on the rear right side (opposite the well-machined one), so the left side drive sprockets became offset enough to cause problems.

Getting the damaged lifter parts off was an adventure that took a long time. I’m now heavily rethinking the clamp collars on live shaft approach. It was fine in the Sportsman’s class where Clocker never took any real damage there, but with everything twanged up, there was hearty use of deadblow mallets, aluminum pusher tubes (to avoid marring the shaft), screwdrivers, etc.

What I couldn’t save were the clamp actuator and lift gear. I had thought about machining another lift gear the week before, but it remained just a thought. While I had a newly assembled and painted clamp arm ready, I didn’t bring spares for the clamp actuator. Without a backup clamp actuator – since Glasgow Kiss had basically wiped all the internals out also – I had to push everything back together in “spatula mode”, just with the lower forks and around 120 useful degrees of gear. Once again showing the difference between Sportsman’s and the full contact weight classes – just like in BattleBots, you should really be prepared to build 2.5 robots, one full set of spares and another for the things which break the most often.

So I delay my next match (and run down that delay as far as I can) to get spatula mode together. When I finally hustled into the arena, though, I discovered that Clocker could only spin in place or turn right. I clearly had wired one of the drive motors backwards, but what? Moving only channel 1 in my elevon-mixed (single-stick driving, basically) radio only caused the left side of the bot to move, with no response from the right side. However, it could obviously spin in place; without a motor being backwards, it means it could drive straight forward or backwards, but only turn right with 1 channel.

Without more time, I had to forfeit my match against Shaka, who, I will point out, somehow went 2/2 at this tournament using only forfeits. It won its matches by forfeit, but had endemic electronics problems which caused it also to lose by forfeit… I am told that in testing shortly after our non-match, it blew up.

Back in the pits, it took me a little more investigation to discover that my Hobbyking radio had somehow lost a mix. When you configure a radio for single-stick driving (or Delta Wing, Elevon, V-tail, etc. for aircraft), you assign mixes to tell channel outputs to listen to certain combinations of stick inputs. Here’s what a typical simple elevon mix looks like for my Hobbyking T6A-v2 transmitter:

There’s two mixes involved – one to tell Channel 1 to move with Channel 2, which on a typical radio is the vertical throw of the right-hand joystick. This means pushing forward on the stick sends the same signal to both outputs on the receiver, so the robot drives forward.

The other mix is to tell Channel 2 to move the opposite of Channel 1, which on a typical radio is the horizontal throw of the joystick. This means if you push stick right, one side of the bot moves forward and the other moves backwards, and is accomplished by setting the mix percentage to be -100 in both directions (do the opposite no matter which direction the stick is moved)

For me, the latter mix – the one outlined in Miku Pink – was NOT responding, despite showing correctly! This meant moving Channel 1 resulted in no opposite motion, just the bot pulling right. This was exactly the behavior seen in the arena, and I would never have discovered it if I had not accidentally put a motor in backwards.

I said the maneuverability tics Clocker showed in its first match will come into play later. I’m now 99% sure that this issue affected the match, and I tried to dynamically drive through it since I try to avoid stationary directional changes (turning in place) due to the brushless drive. A non-working Elevon mix will still kind of work if you move Channel 2 first – it will simply add and subtract Channel 1′s value from one side. In this case, it left the bot prone to pulling right, which is exactly what I saw.

How did I discover this was the problem? Well, I simply had it resend all the settings to the radio without touching a single one and it resolved itself. My radio literally lost a mix from its memory between Friday and Saturday for reasons unknown, even to the point where it convinced its software that the mix was still present.

I must say, I am not even mad. This is an impressive failure mode that I’ve literally never seen before, ever. Before anyone dishes on Hobbyking radios, though, I personally have owned a half-dozen (I keep accidentally giving them to newbies or random students and then getting another one) and also worked with hundreds back in my 2.007 days when they were the radio of choice for the class, and this is the first one I’ve ever seen DROP A SICK MIX like that.

With Clocker out of the tournament and the radio issue solved (!?), I waited for the 30lb rumble to join in on, where I basically overdrove the arm past the end of the gear immediately….. so I simply ran around as a wedge corralling bots in corners until the Vex sprockets’ teeth all came off!

My chain gliders probably wore  enough in that 5 minutes of crazy driving to make the chain skip on the sprocket (since it doesn’t have that great wrap angle), and the power of the brushless drive proceedd to machine the teeth off in short order. Ah well – it was a great rumble anyway. At one point I had every bot except Translationally Inconsistent, who kept slithering away sideways, piled in one corner.

Once I find a good video of it, I shall update the post to include it.

What’s great to see is that the 60A wheels hardly wore. Obviously this is both good and bad, since it means I could have traded hardness for more traction. For the 30lbers, I might go back to the 50A compound – Clocker in previous incarnations has run 50A wheels and I’ve been satisfied. Now is when pouring a few full-size wheels for Overhaul to try and drive around would be a next step.

We part with some shots of gourmet damage from one of Jamison’s loser’s bracket matches against Triggo. megatRON was upgraded to have an AR500 impactor disc on the end instead of a saw, and having that house brought down on you is capable of some serious damage:

this kills the triggo :c

Check out the 1/8″ heat-treated chromoly-steel shell rim also, from the same weapon:

This thing is not trivial; megatRON was actually one of my more feared potential matches because I have relatively weak top side defenses. Expect potentially interesting changes to Sawblaze for #season3 perhaps?!

Speaking of which, what takeaways for Overhaul do we have here besides the obvious bring a spare of the thing you don’t think you need spares of. Or three.

  • DAMN, THAT WAS A GOOD MATCH THOUGH. Honestly, if I had the choice of losing like that to Cobalt, versus the way I did via #setscrewghazi, I’d have picked the former in a hurry. I would have had enough spares to bring Overhaul back online quickly anyway, and it would have made for a much better show and much better test of the bot.
  • I’m highly satisfied with the AR500 wedges. So happy. It deflected the hits from Glasgow Kiss with ease, and also seems to have done its job of transferring the energy into the floor. AR500 has become a bit of a crack epidemic in robot fighting recently as more of it is readily sourced along with laser/waterjet services to handle it. It’s a nice alloy, really – heat treated to the high 40s Rockwell C already, and easy to weld with conventional consumables.
  • Good deflection is also a curse, because you aren’t in control of where the big beating-stick goes afterwards. I’m more convinced than ever – besides by this hit – that the double angle on the front of Overhaul’s pontoons is an absolute necessity. I designed without them for Clocker for simplicity and to see if I’m just being alarmist, but what the single slope let Glasgow Kiss do is deflect its own way upwards and clean house in the clamp actuator. I will need to think about how to  how to retain or improve this design for Overhaul, and to add it to Clocker.
  • I think it might be time for a scoop, for both Clocker and Overhaul. You know how Overhaul has the short arms that I used against Cobalt? Imagine those becoming vestigial and ending behind a angled steel plow which could nest in between the wedges on their inside slopes, making the front of the bot more contiguous. The remnants of this design can be seen in the forward-angled plate that resides on OH1′s forks.
  • It’s more clear than ever that a self-reinforcing geometry trumps material thickness outright. If scaled down directly without changes, Clocker would have 0.75″ thick frame rails, which it clearly doesn’t. It has 0.5″ thick, heavily-machined out side rails with 1/4″ thick cross-bracing plates, and that left the match against Glasgow Kiss needing a single screw extraction and maybe a hit from a good ol’ Engineering Hammer. What this actually means is I spent much of the 6 hour drive back from Harrisburg trying to rationalize that maybe I do need to have Overhaul’s frame remachined again. I’d be able to optimize for the geometry of the side rails. It would shed a lot of weight which can go into other systems I was running out of weight for, and really, based on how deeply Overhaul’s frame rails are pocketed, it’s almost useless to be made from 1.5″ thick stock. But UUUUUUUUGGGGGGGGGGHHHHHHHHHHHH.
  • I’m really, really itching to leave the clamp collars behind when it comes to power transmission to the forks. I think when it comes to fork improvements, just adding cross-bracing to Overhaul is enough, and I way more favor the 8-bolts-to-remove-an-arm setup on it right now for serviceability. I can replace a full set of arms and the clamp actuator on Overhaul faster than I could get the damaged forks off Clocker.

I would love the opportunity to test these hypotheses on a 30lb scale again in less than 1 year, especially because I (think) #season3 is still going down this year. Even if I can’t prove my hypotheses in short order, this was all good stuff to know!

It’s Motorama 2017 Time! Überclocker Changes and Upgrades

Feb 15, 2017 in Bots, Events, Überclocker 4

Since Franklin Institute this past year, I’ve been spending quite some time thinking about what changes I need to make to Überclocker for the annual winter robot party, Motorama. It’s the largest event on the east coast for years running, and the ONLY one left with full-contact 30lbers; I’ve gone basically every year since 2013, and sporadically before that (2008, 2010). This year is slated to be some kind of BattleBots #season2 reunion (where Season 2 was called “Motorama, the TV Show” since so many builders who regularly participate ended up on teams!), and there are some of us who are taking the opportunity to do some… scale model testing. Quick! What is the Reynolds Number of a flying Tombstone!?

So here’s what has been going on during the past few weeks! In my summary of the Franklin event, I identified a couple of strategic issues with Clocker which would also concern Overhaul for #season3, given that they’re built so alike.

The first was having everything ‘line up’ in the front. While it also included making the pontoons more adjustable, higher priority on my mind was making sure the arms have enough constraint that they don’t just splay out. We saw this happen in the Overhaul vs. Beta match where I caught Beta with one arm over and one arm under, so the arms because angularly misaligned. Recall that Clocker 3 and before all have multiple spanning elements holding the forks together; alignment was never a problem with that, but Overhaul didn’t have those elements primarily for an aesthetic reason (to maximize the forkiness). While Clocker sort of did have those constraints at Franklin, it was just one spacer stack, and that was quickly lopped off by megatRON.


So I’m gonna add more, duh! These two additional spacer & tie rod stacks are located out-of-plane with the one at the end, which will yield much greater torsional stiffness.

One issue is that another 18″ of threaded rods and aluminum tubes will put the bot back overweight a few ounces. Nonetheless, I intend to just build everything out to my desires, and then try to weight-cut from there, rather than compromising early. To pre-compensate a little, I decided to order replacement smaller drive motors. The AXi motors are great, but they are dramatically overkill for power, and I can definitely afford to lose a few ounces. Going to the 42mm outrunners will save me about 3 ounces a side, which alone might be enough. In order to utilize the smaller, higher-Kv motors, I also decided to order a pair of Banebots P60s in the 4:1 ratio instead of my current 3:1s, which should allow me to keep about the same speed.

Now, the 2nd big strategic weakness I want to experiment with is where it gets a little interesting.

I mentioned in the FI post about minimizing my defensive cross-section when it comes to vertical weapons. Those things – including drums, drumlet-drumettes (smaller in diameter and width) and vertical discs/blades are actually what I fear the most designwise, because they do two things to you in a match. One is flip your bot over, from which you need to recover (and which would take precious seconds where you’re vulnerable to followup attack from a good driver), but the more insidious one is ruining any straight edges you might have had where the weapon hits. A small KE weapon will put all of its energy into your material like a singularity; it will deform wedges and protrusions, basically preventing you from having an advantage again. All it takes it one fuckup, as Clocker’s match with Duck Yeah and even better example Blacksmith vs. Minotaur show. Notice how Blacksmith more or less has control of the match before it gets dinged once.

So to counter these kinds of weapons, you would have to do two things. Number one is keep them away from you, and number two is present as small of an area for them to touch you in as possible. There’s a lot of precedent in the sport with “keep away sticks”, including one used to great effect on Icewave last time on the show. To reduce my “vulnerable edge length”, then, I basically had to distill the front wedges down to points.

I take that back: this got interesting very quickly.



So that’s revision 1 of the design. See those perforations? That’s for if I mess up and somehow manage to plant these into someone’s weapon instead of besides it. This design is intended to be cut out of AR500 grade steel, which is extremely rigid and springy but won’t stretch that much, so it will preferentially break at the postage stamp line. It’s like an active salamander tail system.

The saw teeth on top are the real bad idea here. Instead of a keepaway stick, I wondered what would happen if I made it a part of the offensive strategy. Most of these little vertical weapons have rubber belts attaching them to their motors. What if I just went straight for that with a very sharp stick? Stab into the gap between weapon and robot frame until you damage the belt or take it right off. That would take some serious driving and luck to pull off, which lured me to the idea further.

There was only one thing I didn’t like, and it was one of those “come back to what you CADed up last night in the morning and think again”. One of my complaints in the FI recap was getting stuck on MegatRON when we charged at each other. These extra-long death-shanks are attached just as the pontoons are, so if I run up on someone else’s wedge I can just as easily prevent Clocker from getting back off. Which is serious bad news when it comes to avoiding a vertical disc/drum spinner, since now they can just turn slightly for a broadside.

This led to revision 2:

Yeah. “It looks like a sawfish-unicorn”, or an Overwhal. That’s right, I decided to affix it to the clamp arm instead, exactly in the fashion shown.

This position I liked a whole lot better for two reasons. One is that it’s implicitly height-adjustable, and can actually be a manipulator weapon of its own. Clocker’s top clamp arm is not trivial – it is designed and built for about 500-600 pounds of closing force. It will lift a lot of things on its own, and is more finely positionable than the lower forks. It’s also more durable with its leadscrew attachment, but the leadscrew anchor is also a mechanical fuse for if things go very wrong and it gets the uppercut treatment – it will break away and probably fling the clamp arm backwards and out of the way, leaving the forks still usable. If I attached this to the forks, and they get bent, then my life becomes very difficult.

The second is a takeoff from the height adjustability. I realized that offensive unicorn strategy #2 was that now I can reach around weapons and bring the house down on their retreating sides, where the disc necessarily disappears back into the robot. With crafty positioning (or a lot of flailing) I could pretty easily literally throw a wrench in the works and shove a wad of AR500 directly between the robot and its own weapon. This would probably result in a very sad unicorn horn and ideally more sad opponent; for me, that’s why the postage stamp holes are kept, so not only will it break away on a successful landing, but will also do it and leave me a 2nd chance if I miss.

Strategically now, I can keep the clamp arm closed and all the way down and use the horn as a keep-away stick of minimum attackable cross section, and also manipulate bots from afar, or get it caught in something else like exposed drive wheels.

….and if you thought it looks silly in the CAD, it looks 10 times as silly in real life. I actually want to make another one of a different length now!

This is another ‘attachment of several ounces’ which would necessitate shedding weight elsewhere, which I will find. One thing I designed up previously but never implemented in real life was a set of light wedges, to be made of sheet 1/8″ aluminum bent into shape. I’m going to go ahead and make them, since they’ll cut around 1 pound off the bot each (Those steel wedges are HEAVY!)

I won’t need that much reduction in weight to use the horn of course, so maybe the configuration will add something else interesting to make up the weight, or just ballast. There is literally no point in weighing less than 30.00 pounds.

So that does it for major design changes. Moving onto more minor quibbles, I wanted to go back and have a look at the wheels again. The custom 50A cast urethane wheels worked beautifully at Franklin, and I now had a bucket of Simpact 60 and Forsch URS-2160 (McMaster part number 8644K24), both 60A urethanes with much higher tear strength ratings, to try.

Now that I was confident in the process, I revisited the hub design. I just designed the first hubs with circular thru-holes for rubber retainment so they could print without support, but the circular holes caused the diameter of the hub to start getting large. I didn’t have much more than the 1/8″ tread pattern’s worth of tread thickness per wheel. With a more rigid rubber, I might be able to increase the relative thickness of the tread portion.

I updated the hub to look pretty much like a scooter or skate wheel core – through-slots replace the circular holes, and the walls are thinner. This brought inwards the OD about 1/4″, which is great!

I also wanted to play with another tire geometry. A little earlier in the year, when Big Chuck’s Robot Warehouse was just being set up, we rented a floor grinder to strip the wooden floor of the decades of industrial grunge that had set up colonies within it:

Well gee, as soon as I saw that, how could I not clone the design in one of my own wheels? So if you’ve never used a floor grinder, a big sanding drum gets shoved over this flappy-wheel. To install it, you lock the rotation of the flappy-wheel and gently rotate the drum over it (in thise case, clockwise) while pushing it on. The flappy-wheel is effectively a huge sprag clutch with the drum as the outer race and the flaps as the ratchets/sprags. When the wheel is spun by the motor and the drum gets loaded against a floor, the flaps get forced open a little from the transmitted force of friction, causing them to push out against the drum harder, which causes more friction.

After I finished going “Well huh, that’s kinda smart’ I realized this design would get very good traction in one direction as each flap gets forcibly planted into the arena floor. The reverse direction might not be as spectacualr. Before I got ahead of myself with anisotropic traction designs, I decided to just imitate the flappiness  in my current tire design.

That’s the same helical tread sweep, just with many more slits of a greater depth and narrower width. I did this for “easy” (change the number and size of swept features) for the time being. I’d like to play with a straight-cut geometry like the floor scrubber in the future.

Printing this damn thing was an ordeal. Unlike the previous wheels, the molds could no longer be printed upright without support structures due to the way the helical threads are placed. Furthermore, the deeper tread features also prevent demolding in two halves, so I had to split the mold into quarters. Attempt #1 with supports was basically a no-go, since it was almost impossible to get them out cleanly and not leave little strands and hairs everywhere.

I next tried to print the mold wedges “pointy side up”, making a flat face on the outside of the circle for them to sit on. This was okay, but the nylon warped just enough on each print to make the edges not seal at all – this was attempts #2 and #3. I guess I could have made an Onyx mold too, since it has virtually no deflection, but by that time I’d mentally moved on.

The fourth and successful attempt was a single-piece mold which simply had the upper lip chopped off. I don’t even know why I thought the upper lip was needed now. Just fill to the top and be done!

That’s the model with the lip removed.

So how do you demold this damn thing? It was risky, but I decided the one-piece mold was okay because of the spiral nature of the tread allowed me to helically demold the cured wheel from the mold. And this ended up being completely true! I back out the hex bushing a half-inch, take a wrench, and untighten the wheel right out!

This worked quite well. Here are the two first wheels to emerge with the new material and tread! I stuffed the leftover mixed rubber into an old wheel/hub combination, because wheels are wheels. Notice the white core of the two new ones – they’re made from plain ABS, since I wasn’t about to waste the Onyx material on something I wasn’t sure could ever be removed from the mold. They’ll be on standby as low-priority spares nontheless.

Next up, the Forsch Polymers URS-5160. Forsch is one of those “Call Billy” companies that I always complain about – just go look at their 1997-chic website! Except this time, I was literally told that I had to call Billy (over in BILLING no less) and FAX him the order, then MAIL them a check. Credit card? Paypal? Pffff.       

Oh, Billy also leaves at 2pm each day, so I gave up after 3 days of failing to get in contact with him because I might have trouble waking up before 2pm on most days. Luckily, someone clued me in that McMaster’s general purpose pourable 60A urethane is manufactured by Forsch, otherwise I would have given up completely.

So why the hunt for a product which tries so desperately to not be purchased by anyone? Well, it advertises around 25% more tear strength and ultimate tensile strength than Smooth-on’s Simpact 60. Smooth-on is geared towards being easy to use – everything is made 1:1 or 1:2 mix ratios, so it doubtlessly sacrifies some strength and performance for convenience. I figured that polyurethanes worked like tacos – the shadier and harder to find that a Mexican restuarant is, the better the food. This has been almost bulletproof in my experience. I made it a point to obtain a Forsch product and use it like Robot Jesus Himself intended.

What I really want to try getting my hands on is the URS-2450, which has basically the same tear strength but in a 50A durometer. May Billy and I finally meet in the grand arena of procurement soon.

I cut new wedges out from AR500 plate. These were what they were meant to be, but I couldn’t get the material in 1/8″ (or 4mm-ish) thickness in time before Franklin. This was actually cut from one of Jamison’s spare plates left over from Sawblaze. I’m preparing them for welding here by grinding the incredibly thick scale they all seem to come with off.

Stay tuned for more, though with Motorama now 2 days away, I might just be updating after the fact! Still to come are the making of the pontoons, the spare lighter drive motors, and maybe a little bit of wheel testing!

Franklin Institute 2016 – The Post-Event and Thoughts on #season3

Oct 21, 2016 in Events, Überclocker 4

So now that we’ve gone over the build of Clocker 4, it’s time to talk about how the bot did! The Franklin event was one that I went to the first time last year, and it was quite the experience – if not extremely busy since the whole tournament has to be finished in 1 day.

Everything I needed for this event fit on one handtruck. See? Why can’t we just build 30lbers for BattleBots? Film the whole damn tournament in macro so they look huge!

I was prepared to take a few last-minute MITERS people, so I showed up ready to go. However, plans suddenly changed…

Mr. “I’m not sure if I’m going to go and it’s 9PM the night before the event” decided to take 30lb-SawBlaze. Given its reliance on conventional lithium batteries, we had to really quickly make a replacement battery using 18650-sized A123 cells pulled from my stock, using the last minute MITERS robots’ prep time to do this. This battery furthermore had to fit in the former space occupied by two flat LiPoly packs, so it ended up looking like a weird laptop battery. The vertical cells leaked into spaces the flat packs did not, in order to get some more battery energy.

MegatRON/30-Sawblaze also uses the Axiii motors attached to P60s, incidentally. That means we’re well matched for speed and power. This should get exciting!

Five hours later, we emerge out of hyperspace into the orbit of Philadelphia, only losing $26 of toll money in the process. On the way, I stopped in Manhattan to pick up two spontaneous teammates, Cassandra and Allen-chan (for whom this is public notice towards to put a real damn website together). Cassandra took most of the photos to follow, since I was too busy running around headlessly.


All set up and ready at the event, with a pipefessionalism to the left.  The pits at Franklin are always tight due to the space available, so I actually shared a table with Jamison. Getting pointy 30lbers in and out of the aisles was always a dance routine.

What’s that on the back of Clocker? Why it’s chibi-Haru-chan! Join Cynthia in a month of drawing cute chibi-style BattleBots entries!

IT’S ROBOT FIGHTING TIME! In the Red Sharpie Blob, it’s… god dammit Charles, get out of here, you’re not Faruq!

Clocker’s first opponent was Melvin, a modular pushybot with different pushy type attachments. It was a fairly easy target to grab, and I didn’t feel particularly threatened by it so I took the time to get to know the drivetrain better. I got a few good grabs on it, and then….

…whoops. After those good slams, the upper jaw just comes off. Well, this is disappointing, but I can’t say that the dislocated look isn’t neat in its own way. The weak link was the linear actuator’s leadscrew anchor.

I had two 1/4″-20 set screws – the same kind that took out Overhaul – holding onto the leadscrew in a notch, but I guess the force of the lift and clamp crashing down was enough to tear the end of the notch, and off the leadscrew came.

This was resolved by using two oversize drill bits to drill deep dimples into the location where the set screws landed, turning them more into pins. I didn’t have issues with this the rest of the event.

So far: 1/0. Here’s a video of the first match against Melvin!

My next match was none other than Mr. “I’m glad there was still a registration spot open when I got there”, 30lb Sawblaze a.k.a Megatron. This was a spoiler for #season3 excellent driving and maneuvering match that I just barely lost. Having weight on the front of your robot still trumps (We need to find a new word for this activity eventually) any amount of fine compliant wedge tuning, I think. I was hard pressed to attack Megatron head-on, so I concentrated on keeping it rolling over and self-righting, but there were more moments when he had control. Once Clocker was propped on the prongs of Megatron’s plow, it was more difficult to un-prop.

Near the end, Clocker was stuck upside-down momentarily. I thought it was the DeWuts clutching out, but looking at one of the match video angles showed that Megatron had spun off one of the nuts that holds the cross-fork tie rod together, and the tie rod was fallen out and jammed between the forks and pontoon. It took several seconds of forcing it back and forth before it finally bent enough to let me flip back over. However, in that few seconds, I lost significant mojo with the judges.

So far: 1/1. Here’s the exciting maneuvering match!

Some nice sparks coming off Clocker’s pontoons from the sawblade!

After this match, the rear wheels were basically worn flat. This is fairly consistent behavior – a few Motoramas ago, Clocker ran out of wheels. After that, I was replacing the duallie BaneBots 50A durometer wheels once per tournament. This version of Clocker combines smaller wheel contact area with a lot more drive power, so I was expecting to burn them down faster. There’s still a lot of “eraser flakes” going on, so I might want to look into a harder compound or just more durable material. I also openly admit that my casting technique might need some work.

The front wheels suffered less, since they were unloaded somewhat by the pontoons. I’ll add that having the pontoons firmly on the ground was not that helpful – I felt like I had traction issues, but it was really the pontoons and forks making the bot act like it’s front-heavy. It drove much better if I had the forks up a little. This is actually good to know for #season3, and I’ll talk about that later.

Some nice gouge marks in the pontoons from being held under the saw for a few seconds!

This is the cause of the jamming. The threaded rod tying the forks together backed out – most likely due to the saw, given there’s a significant cut mark on the standoff like someone took a poorly sharpened lathe parting tool to it!

Alright, I had maybe 10 minutes until my next match (Franklin runs FAST – you aren’t guaranteed the usual 20 minutes of repair time). Can we change the wheels in time? I brought my pack of spares  that were cast days before. This batch had air bubble problems, clearly visible in the wheel, since I could not locate the makerspace’s vacuum mold degassing chamber. Someone probably ran off with it for New York Comic Con. I was curious now about how the airy wheels will wear down, so I swapped them on anyway.

The next match was against Duck Yeah, a vertical spinning “STD” bot (where STD has now become popular robot slang for Single Tooth Disc). This is architecturally similar to BattleBots like Witch Doctor, Brutus, or Hypershock, so I was excited for this match. I don’t have a good tactic against STDs or other vertical wedged weapons besides “Don’t Fuck Up”.

Well, I did. My penchant for backsliding into head-on assaults did not end well. In fact I fucked up almost immediately, and the pontoons and arms bent up enough for it to be almost impossible to get back under Duck Yeah.

I got tangled in a hit shortly after that which let Duck Yeah go Full Mike Tyson and nip off one of the ears. These ears were definitely more risky than Overhaul’s – I got stuck sideways on them once while the clamp was open and I forgot how to self-right. Overhaul 1 and 2′s self-righting do depend on the clamp being closed past a certain position, which is easy to forget without practice. PRACTICE DRIVING YOUR DAMN ROBOTS!

The bright red glow coming from the middle of Clocker is the clamp motor’s endcap which got blown off in an impact – the brushes are touching and heated to incandescence by the current flowing through them!

Match video here. About midway through, I gave up on lifting since the pontoon edges were mangled and the forks bent, and just drove it around slamming it into walls more.  I won the match on this basis.


So far: 2/1

The ear that got nibbled split pretty cleanly along layers. You can also see that the weapon made contact with my clamp motor at least once!

Alright, not much more time until I have to get back in the box, so I quickly swapped a spare clamp motor in. This actuator, thank goodness, is far easier to service than the previous ones!

One thing I did not have was spare forks. This was a pretty severe oversight, as I had the ability to cut them out the week before and dd not do so. I also didn’t have a big enough press, or enough time, to straighten them out again to a degree that would be useful. As such, out comes the angle grinder. I’d rather fight with 1 fork than two are are kind of at different levels.

After this bold move, I try testing the repaired clamp arm and……. nothing. The motor wiggles a whole lot, but doesn’t really move the leadscrew. Uh oh…. I pull the thing apart and discover that it had a totally different pinion. I grabbed a motor for an incompatible drill out of my bin, went “LOOKS OK FROM HERE”, and threw it in the parts box! The gear was similar in diameter, so it “kind of worked”, but really didn’t. Cue 10 minutes of trying to find either a replacement motor or a pinion puller – someone came through with the latter, and I was able to transfer the pinion off the destroyed motor.

The next match was another cripple fight against a decidedly less mobile Melvin. This time, Melvin busted out a thwackbot assembly since they could only spin in place with 1 functioning motor. This was a match where I drove a little harder and went for broke. I had so little time after discovering the motor mishap that I left the ears off. Nontheless, it was a match full of a few full power, cross-arena drives which I had not attempted up to that point. One of these dislodged the bumper inside the arena!

Here’s that match. Near the end, I stranded Melvin sideways on the bumper. I generally have a policy of freeing opponents if they get stuck once, but if I get them twice, I’m done. 3/1 now, and Clocker moves onto the Loser’s Bracket finals (aka the most winning of the losers!)

And who was my next match? A rather crippled Megatron, who just got recently bounced off the ceiling by Big Ripto, in an event which called into question the integrity of the arena. This match wasn’t long – Jamison didn’t have enough time, nor the means, to reattach the plow in a way beyond large quantities of what he calles “Harambe Tape”. Nor was the saw functional. So the plow fell off early on and he decided to call it. Here’s the match from Fred – this put Clocker in the finals at 4/1….. against Big Ripto.

The finals didn’t happen. You can tell because here’s a photo of Clocker still in one piece. The event organizers decided to ban Ripto from the arena again citing the danger of ejecting parts from the roof. This was made known to us when the organizers pulled Kyle and I aside and had a chat about the arena falling apart. While there was some rock-paper-scissors involved, I handed the victory to Kyle unconditionally. There was no way I would have stood a chance in the shape Clocker was in at this point, and Ripto had taken literally no damage. It’s a rock solid design that’s hard to counter, especially when nothing on the front of your bot lines up any more.

I just made the organizers promise to match Ripto and Clocker up first thing at Motorama 2017 next year. By then, hopefully my strategy against vertical weapons will be more evoled. That ought to be funny.

So that’s the story of how Überclocker 4 / 30-haul took 2nd place at Franklin 2016!

On the way out, we stopped for dinner at a place I was explicitly recommended to go for the best Philly Cheesesteak. While I agree that it was very good, we all fucked up on a very important aspect: Not realizing the place offered toppings. Now, up until this point, I had never ordered a geuine Philadelphia-sourced cheesesteak sandwich, so I thought it was SUPPOSED to be just an amalgamation of meat and cheese. Again, this was a very good amalgamation of meat and chese, but it could have had onions, peppers, bacon, more cheese, more bacon, and all sorts of sauces on it for no additional charge. So I lost this round, and will need to correct this next FI.

In the end, how does this event affect my outlook for #season3?  The “lessons learned” fall primarily into the strategic, but there were also physical results.

  • First off, the molded wheels worked excellently. They did wear quickly, but not unusually so. I would have actually accepted consuming a set of wheels per match. That’s actually why Overhaul ended up having so many spare wheels made. So the task at hand is to investigate more compounds and see if one or the other yields better wear life while not giving up traction. In terms of raw traction, I was satisfied. I’ll probably commission a few pull tests on a steel panel covered in the same “traction paint” as used in the box, on a small scale first with promising candidates moving to Overhaul-sized 5″ wheels.  While there were times I thought I had poor traction, it was largely interweaved with the ground force exerted by the forks and pontoons.
  • Speaking of which, I’m thinking some system of continuously adjustable ground force is needed.  Clocker begin the tournament with pontoons slightly too low, and this obviously impeded maneuverability since it preferentially loaded the rear wheels and left the fronts almost unworn – hence wasted. After some big hits, the pontoon edges became worn back and I actually began driving better as evidenced in my second MegatRON and Melvin matches. In fact, this is something Beta has the ability to do. I can pre-load the shock mounts using different height spacers, but it would be nice to have a set that’s adjustable in height somehow. This is to make sure I can perform fine tuning of the contact while Overhaul is loaded up in the test arena for functional verification before the match. I’ll have to think about if this system is worth pursuing and in what form it will manifest, but I want to MACHINE THE PAINT OFF THE FLOOR (so, you know, I can get better traction).


  • Likewise, I should think harder about an adjustable hard stop for the arm travel. Clocker 3 had one, but Clocker 4 just relies on the frame rail. This is not adjustable and obviously the zero point will change with damage. Same goes for Overhaul.


  • I’ve got a lot to learn about driving strategy now that I’m back in the high energy class. It’s completely acceptable to attack Sportsman’s class bots head-on since the chances of you exploding doing so are minimal, and this has clearly influenced my attack style with Clocker, since the ‘smash and grab’ visual is also an audience pleaser. This is obviously dangerous if you are liable to being fed into a vertical drumlet. I still consider the vertical wedged weapon the most dangerous adversary, given that Overhaul has taken on a high powered horizontal weapon well (okay…. you know what I mean) and Clocker fared so poorly against Duck Yeah. Ripto would have been a disaster for sure.


  • It’s very obvious  that I cannot count on every part of the bot lining up to make the front impregnable. I used to drive pushybots with hinged wedges which were lightly pressed against the ground. This, besides not interfering with traction unlike hard-mounted wedges, also affords a chance to escape if you go up on the opponent. In the first battle of MegatRON, Clocker was constantly getting stuck on the attack phase since I would charge into an equivalent charge by Jamison. It was also well evidenced against Beta that Overhaul was hard pressed to escape getting wedged. How to prevent this without compromising the function of the pontoons I am less sure – it could very likely just come down to more strategic driving.


  • I furthermore have some thoughts about minimizing my defensive cross section against vertical wedged weapons that I will keep offline for the time being. The upcoming MassDestruction event in 3 weeks might be a good chance for me to test some of the ideas on the beetleweight scale, where drums reign supreme. I’m tempted to build a simple beetleweight pushy-wedge (sigh) to exercise my skills and countermeasures against vertical weapons. (It’s important to note, however, that nothing scales directly; concepts can be expanded, but I can’t magnify everything I did on Clocker by 2x and expect it to behave the same way)



Completing Überclocker 4 & The Leadup to Franklin Institute 2016

Oct 15, 2016 in Bots, Events, Überclocker 4


Contrary to most years that I’ve returned from Dragon Con by road, I did not have a job pressing need to return to Boston, so could take a few days to roam around Atlanta. This time, I revisited a couple of old haunting spots from the high school days – namely, junkyards, flea markets, electronics shops (what remained, anyway), aaaaand McMaster-Carr. When it was time to return, I decided to do something which I’d been thinking about for a while, and had been recommended by “car people” friends – hit up the mountain roads of the Blue Ridge Mountains and Great Smoky Mountains National Park. Many moons ago, my parents took me on a road trip to Harrah’s Cherokee Casino in North Carolina via some scenic routes such as U.S. 441, and I’d been reading up on the area as of late. Back then, I certainly didn’t appreciate the scenery or natural surroundings as much as I d…. nah, I still don’t, but those mountain curves I remembered as being awesome.

I solidified the plan as diffusing through North Georgia using U.S. 19/129 through Blairsville into North Carolina, then ascending via U.S. 74 eastwards until the intersection with N.C. 28. From there, I would follow the Tail of the Dragon (returning to U.S. 129) and eventually end up in Knoxville, from which it is easy to return to the Interstates. It was an incredibly scenic adventure – I definitely want to return here next year and perhaps try a different tourist trap on the way down – I’m hankering a little for the Diamondback 226.

The careful reader would notice that yes, this means I took a heavily-loaded Mikuvan filled with an entire Dragon Con of robot gear with Overhaul in the back and everything up and down twisty two-land forested mountain roads.

b o d y   r o l l

And bought the “unflattering water slide photo” at the end!

I must point out – loaded heavy in the back with about 500 pounds (Overhaul, all the robot gear and tools, all of Jamison’s robot gear and tools, and whatnot) made the handling and ride better than empty, I’m pretty sure. I tend to throw MV around like a go-kart, and the back end does get light due to the front mid-engine and front driving position. In winters, I regularly keep tools and heavy objects in the hatch to get more purchase during slushy or snowy weather. So I think riding empty might not have been any better, and it’s not like you can actually go that fast on the road while maintaining your lane. It took a few turns to “get it” (and probably warm the tires up a little) before I began really tossing it into the curves. “Continuous tire squeal” must have been concerning to bystanders…

Here’s the whole run from my high-mounted dashcam. Note that this is a very different and weird position compared to most dashcam videos – it’s mounted high up on the very tall cabin, pointed more down than forward, and Mikuvan has no front. Some people actually have said it made them dizzy due to the different motion experienced.

I think around the 3-minute mark is when I started getting more adventurous. Cynthia can be seen trying to constrain herself, her phone (recording a different perspective), and random objects in the cabin.

Anyways, fun times. But you guys came here to see Über-haul work! Here’s what went on in the few weeks before Franklin 2016. In this timeframe, I also went to New York Maker Faire to marshal the Power Racing Series race there again – Chibi Mikuvan came along as an exhibition item, but I didn’t race. I’ll need to post an update about the Detroit and New York Maker Faires at some point.

I did a fair amount of work in the remaining few days in Atlanta. One of the first things I did when I returned was drop by MITERS and use the large drill press to finish drilling some of the frame holes all the way. I then assembled the bot more completely to test the fit of everything.

Verdict: Yeah, sure, whatever. #zerosigmas

One element that has been missing up to this point which you people keep pointing out is that Clocker 4 is missing the classic Overhaul ears. Yes, yes I know, I just haven’t gotten to them yet.

The purpose of the ears on Overhaul 1 were to permit self-righting – the bot had a stable 45-degree-roll upside-down orientation that in testing, we could not get out of. Overhaul 2 addressed that problem a little with geometry, but it was still there – so the ears appear in a slightly different shape. The shape of the ears is a compromise between eliminating this 45-degree stable spot and extending far enough up to tip the bot over once it was fully on its back, using the action of the forks.  OH2 traded some of this latter ‘stickup’ distance for more sideways extension, which is why its ears appear proportionally smaller and flatter than OH1. The tradeoff is it takes a full power swing of the forks to get back over, something I was not too happy about and which contributed to a fair amount of pre-event paranoia in the team.

For Clocker, I wanted to explore the ‘high stickup’ option. This meant the ears have to be shifted forward some to not interfere with making the upside-down stable spot worse. It also makes the bot look very much like some kind of micro-fox or Gundam headpiece.

The ears are designed to be printed using Onyx with additional carbon fiber perimeter reinforcement, so they ought to be immensely beefy. They have to stand being landed on if this thing gets flipped.

I printed these while in Atlanta, but the installation came afterwards. They push into one of the circular cutouts in the clamp arm, have a flange to maintain the tilt angle, and is sandwiched together with 4 bolts.  This configuration means they don’t wrench on the side plates of the clamp arm, which are aluminum and would likely bend, instead bracing each other using the bolted connection… It also hopefully also makes them replaceable. I may pursue a similar strategy for Overhaul this coming BattleBots season, even if the ears are individual weldments.

The chain path for Clocker 4 was never quite decided, but I figured there would be a third tensioner or chain guide involved to force the chain to contact the motor drive sprocket more. This manifested itself in this slip-on tensioner that I designed after seeing the most perfect location for it also coincided with one of the frame rail trusses, so it was easy to make something that  mounted directly on it. Unlike Überclocker 3, it doesn’t have roller tensioners on eggy cams, so is not adjustable in this manifestation, maybe the next one.

Problem: I got paranoid and piled everything onto my scale, and it came out two pounds overweight. Wait, what? The CAD model says 29.5 pounds!

After significant investigation, it turned out that my beautiful PAXi motors were never assigned a finished weight. They each contributed 2.2 pounds to the bot in real life, but were modeled as only 12 ounces apiece…. basically, the P80 parts that I did assign weights for during the design of Overhaul 2….

However, I might actually swap these out before FI 2016 for modified P60s, since having the armor weight back would be nice.

Well then. Turns out I needed more than armor weight! Even eliminating 1lb each would still put the bot overweight. The remainder, I figured, came from wiring (all the 12 gauge adds up) and additional hardware.

Alright, time to borrow a P60 model and smash the AXi onto it.  At this point, I do not own a P60, so I didn’t know how easy this was to do, but it was still 2 weeks out from FI so there was plenty of time to find out.

Since the frame was designed around and cut out for a P80, I actually had to make a P60 to P80 adapter plate. This attaches to the front of the motor using its existing tie rods in counterbored holes, so the front face is flush. The tapped holes are at the P80 bolt circle locations.

A week later, a pile of BaneBots equipment appears. I took the opportunity to also investigate their new BB series gearboxes – Building Block, so named because they feature stackable designs similar to the Vexboxen. I got a BB150 thinking it was similar to a P60.

I was wrong. It’s like a P70 or something, literally almost the middle in dimensions between the P60 and P80. Their BB220 gearbox is the same square size as the P80, however.  Internally, it’s quite massive and a huge improvement over the P60 architecturally, with widely spaced bearings and a double-thick output carrier plate.  I will keep the BB150 around for other applications – it’s too big for this one. Banebots have come a long way from their early brass gear days, but I feel like people never quite let them live that down. The six P80s in Overhaul 2 speak to that well.


Mabuchi 700 series motor bolt circle: 2x M4 on 29mm

AXi 4120 bolt circle: 4x M4 on….


Look at us, we’re so brushless we need to be just different enough to piss everyone off.

Luckily, “drill out the mounting holes 0.5mm larger each” was enough and the M4 cap screws just barely slipped into the existing counterbores.

To mount the pinion, I borrowed a 0.2357″ (6mm minus 0.0005″, because what are units?) reamer from Jamison and expanded the 5mm bore with it, then pressed the pinion on. This fit is backed up with green Loctite 609 retaining compound. It mildly makes me worry, bu Jamison swears it works… alright, we’ll find out. I’d personally have gone  -0.001″.

Here are the two completed P60 & Axi sandwiches ready to mount in the bot. This setup weighed 19oz each, down from 34oz of the P80 combos, putting the bot at still a half pound overweight.

With the motors now secure, I returned to the parts of the bot I stopped caring about before Dragon Con – namely, the electronics mounting. I first cooked up this DLUX 160 bracket in Atlanta and tried 3D printing a version. It worked fine, except there was not really a way to retain the top one since the gap now crossed by the N shape was open. I closed the gap using the diagonal brace that acts a little bit like a flexure spring.

Now the DLUX controllers take some effort to push in, which is great, since they won’t easily slide around.

The bracket attaches to the bottom of the bot with four #4-40 screws.

Next up? Battery tray. Clocker 3 just cinched the battery to the baseplate but I wanted something more constraining for the full contact 30lb class. Now the battery will sit in a 4-sided tray so it can’t move, and secured using nylon Velcro straps to that. The 4.4ah 7S lithium pack I had been using in Clocker was downsized to a 3.3Ah 6S pack to save more weight.

Clocker is known to work for exactly 1 match on a 2.3Ah battery thanks to FI 2015, and I originally used the 4.4Ah lipo packs because I had them and because Dragon Con matches tended to run back-to-back with minimal repair time.

The reason the tray looks oversized for that 3.3Ah battery is because it’s actually designed to house a row of A123 cells. The Franklin museum does not permit conventional Lithium batteries in anything above the 3lb class, since it’s entirely indoors in a museum and magic lithium smoke & fire cannot be tolerated. So, A123s it is. This means most bots run on reduced power for FI since you can’t fit as much battery into the same location using round cells as prismatic ones.

Pictured is 8 A123 cells. I plan on fitting as many cells in series as I have weight for at the end.

The final 3d printed bracket of convenience is the receiver and other electronics housing. This is taken care of by using the RageBridge lift & clamp controller as a cap! It’s a hollow case secured to the baseplate with more #4-40 screws, then the Rage comes in upside-down and is retained the same way.

After the New York Makre Faire, it’s time to perform the final fitting-out of the bot. Here’s everything being installed in place…

Another experiment I wanted to try in the interest of #season3 Overhaul was tilting the rubber shock mount wubbies to dig the front of the wedge into the ground. Since these wubbies were in a regular pattern, it was easy to put an equally regularly increasing spacer height under them progressively. For weight and lack of steel fender washer purposes, I made quick 3D-printed (this word….. I swear) spacers to test a few orientations. I think they’ll make it into the final assembly because nylon is still far more rigid than rubber – there’s actually no need for steel washers.

It’s coming down to the last three days before Franklin now, and I’ve started mass producing wheels and…………… set screws. I promised to bring a bag of them to the event to sprinkle into the arena. They’re 1.5″ diameter and 2″ tall, made of genuine organic Miku Blue PLA (get yours today!).

Wiring completion was fast, as more than half of was done in Atlanta. I just had to make a few more extensions and replace the 3mm bullet connectors on the AXi motors with 4mm ones. I decided to not make a switch panel for now, opting to just do it like most of my other smaller bots and just plug & unplug the battery cable.

Checking out the weight I had left over, I decided to run a 7S A123 pack instead. I weighed the bot with the FI-illegal lithium polymer battery to establish an upper limit, and then just added as many A123 cells as I could under that limit.

Now, look at that battery and tell me that you’d rather have that bullshit than a professionally made lithium cobalt battery!

And here it is! The finished Clocker 4, alongside a toy Overhaul for even more scaling fun.

But the story doesn’t stop there. At this point, the bot was still around 6 ounces overweight (with the FI-illegal battery, which is 2 ounces heavier than the 7S A123 pack). So I at minimum still had to cut off 4 ounces, preferably more.

I decided the best way to do this was to trim off the inside corners of the pontoons. They’re actually now shaped more like Overhaul’s. The flange on the interior only reaches back about 3/4″, which should be enough to still hide the edges from intruding weaponry. This actually removed about 3 ounces per side, putting me a healthy amount underweight.

Another funny robot exercise: Trimming the pontoon bottoms to be level and also riding flush with the ground. Just throw the whole thing on a belt grinder and have at it!

Just barely under now, with the 3.3Ah LiPo pack and all remaining hardware I could think of added, so I actually have a healthy margin for FI with the 7S A123 battery.

Here’s a test video of Clocker 4 playing with the (still working, just sans actuator) carcass of Clocker 3.

As I point out in the video, it’s way more stable when lifting than I anticipated. Clocker 3 is huge for a 30lber, and it just gets picked up and whammed around almost effortlessly. I was super happy with the speed of the lifter. While the clamp could be faster, the priority was on holding force for this edition with speed only coming from severely overvolting the clamp motor. Recall that the clamp motor is the same as what 12 O’Clocker used for drive this year – I just made sure to order a bunch of spare motors.

Time to pack it up. To come is the event report!